Datasets:

Modalities:
Audio
Text
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
SongFormBench / README_ZH.md
ASLP-lab's picture
Update README_ZH.md
b7be40a verified
# SongFormBench 🏆
[[English](README.md) | 中文]
**一个高质量的音乐结构分析基准**
<div align="center">
![Python](https://img.shields.io/badge/Python-3.10-brightgreen)
![License](https://img.shields.io/badge/License-CC%20BY%204.0-lightblue)
[![arXiv Paper](https://img.shields.io/badge/arXiv-2510.02797-blue)](https://arxiv.org/abs/2510.02797)
[![GitHub](https://img.shields.io/badge/GitHub-SongFormer-black)](https://github.com/ASLP-lab/SongFormer)
[![HuggingFace Space](https://img.shields.io/badge/HuggingFace-space-yellow)](https://huggingface.co/spaces/ASLP-lab/SongFormer)
[![HuggingFace Model](https://img.shields.io/badge/HuggingFace-model-blue)](https://huggingface.co/ASLP-lab/SongFormer)
[![Dataset SongFormDB](https://img.shields.io/badge/HF%20Dataset-SongFormDB-green)](https://huggingface.co/datasets/ASLP-lab/SongFormDB)
[![Dataset SongFormBench](https://img.shields.io/badge/HF%20Dataset-SongFormBench-orange)](https://huggingface.co/datasets/ASLP-lab/SongFormBench)
[![Discord](https://img.shields.io/badge/Discord-join%20us-purple?logo=discord&logoColor=white)](https://discord.gg/p5uBryC4Zs)
[![lab](https://img.shields.io/badge/🏫-ASLP-grey?labelColor=lightgrey)](http://www.npu-aslp.org/)
</div>
<div align="center">
<h3>
Chunbo Hao<sup>1*</sup>, Ruibin Yuan<sup>2,5*</sup>, Jixun Yao<sup>1</sup>, Qixin Deng<sup>3,5</sup>,<br>Xinyi Bai<sup>4,5</sup>, Wei Xue<sup>2</sup>, Lei Xie<sup>1†</sup>
</h3>
<p>
<sup>*</sup>Equal contribution &nbsp;&nbsp; <sup>†</sup>Corresponding author
</p>
<p>
<sup>1</sup>Audio, Speech and Language Processing Group (ASLP@NPU),<br>Northwestern Polytechnical University<br>
<sup>2</sup>Hong Kong University of Science and Technology<br>
<sup>3</sup>Northwestern University<br>
<sup>4</sup>Cornell University<br>
<sup>5</sup>Multimodal Art Projection (M-A-P)
</p>
</div>
---
## 🌟 什么是 SongFormBench?
SongFormBench 是一个**经过精心整理、由专家标注的基准数据集**,旨在彻底改变音乐结构分析(MSA)的评估方式。我们的数据集为比较 MSA 模型提供了统一标准。
### 📊 数据集构成
- **🎸 SongFormBench-HarmonixSet (BHX)**: 来自 HarmonixSet 的 200 首歌曲
- **🎤 SongFormBench-CN (BC)**: 100 首中文流行歌曲
**总计:300 首高质量标注歌曲**
---
## ✨ 主要亮点
### 🎯 **统一评估标准**
- 建立了 **标准化基准**,实现 MSA 模型间的公平比较
- 消除了评估协议中的不一致性
### 🏷️ **简单标签系统**
- 采用广泛使用的7类分类系统(如 [arxiv.org/abs/2205.14700](https://arxiv.org/abs/2205.14700) 中所述)
- 保留 **pre-chorus** 段落以增强粒度
- 可轻松转换为 7 类(pre-chorus → verse)以保证兼容性
### 👨‍🔬 **专家验证质量**
- 多源验证
- 专家标注员手动校正
### 🌏 **多语言覆盖**
- **首个中文 MSA 数据集**(100 首歌曲)
- 弥补了中文音乐结构分析的空白
- 支持跨语言 MSA 研究
---
## 🚀 快速开始
### 快速加载
```python
from datasets import load_dataset
# 加载完整基准数据集
dataset = load_dataset("ASLP-lab/SongFormBench")
```
---
## 📚 资源与链接
- 📖 论文:*即将发布*
- 💻 代码:[GitHub 仓库](https://github.com/ASLP-lab/SongFormer)
- 🧑‍💻 模型:[SongFormer](https://huggingface.co/ASLP-lab/SongFormer)
- 📂 数据集:[SongFormDB](https://huggingface.co/datasets/ASLP-lab/SongFormDB)
---
## 🤝 引用
```bibtex
@misc{hao2025songformer,
title = {SongFormer: Scaling Music Structure Analysis with Heterogeneous Supervision},
author = {Chunbo Hao and Ruibin Yuan and Jixun Yao and Qixin Deng and Xinyi Bai and Wei Xue and Lei Xie},
year = {2025},
eprint = {2510.02797},
archivePrefix = {arXiv},
primaryClass = {eess.AS},
url = {https://arxiv.org/abs/2510.02797}
}
```
---
## 🎼 梅尔频谱图细节
<details>
<summary>Click to expand/collapse</summary>
环境配置可参考 BigVGan 的官方实现。如果音频源失效,可使用以下方法重建音频。
### 🎸 SongFormBench-HarmonixSet
使用官方 HarmonixSet 梅尔频谱图。复现方法如下:
```bash
# 克隆 BigVGAN 仓库
git clone https://github.com/NVIDIA/BigVGAN.git
# 进入 utils 目录
cd utils/HarmonixSet
# 更新 inference_e2e.sh 中的 BIGVGAN_REPO_DIR
# 运行推理脚本
bash inference_e2e.sh
```
### 🎤 SongFormBench-CN
使用 [**bigvgan_v2_44khz_128band_256x**](https://huggingface.co/nvidia/bigvgan_v2_44khz_128band_256x) 重建。
您应首先下载 bigvgan_v2_44khz_128band_256x,然后将其项目目录添加到 PYTHONPATH 中,之后即可使用以下代码:
```python
# 查看实现
utils/CN/infer.py
```
</details>
## 📧 联系方式
如有问题、反馈或合作机会,请访问我们的 [GitHub 仓库](https://github.com/ASLP-lab/SongFormer) 或提交问题。