|
|
# SongFormBench 🏆 |
|
|
|
|
|
[[English](README.md) | 中文] |
|
|
|
|
|
**一个高质量的音乐结构分析基准** |
|
|
|
|
|
<div align="center"> |
|
|
|
|
|
 |
|
|
 |
|
|
[](https://arxiv.org/abs/2510.02797) |
|
|
[](https://github.com/ASLP-lab/SongFormer) |
|
|
[](https://huggingface.co/spaces/ASLP-lab/SongFormer) |
|
|
[](https://huggingface.co/ASLP-lab/SongFormer) |
|
|
[](https://huggingface.co/datasets/ASLP-lab/SongFormDB) |
|
|
[](https://huggingface.co/datasets/ASLP-lab/SongFormBench) |
|
|
[](https://discord.gg/p5uBryC4Zs) |
|
|
[](http://www.npu-aslp.org/) |
|
|
|
|
|
</div> |
|
|
|
|
|
<div align="center"> |
|
|
<h3> |
|
|
Chunbo Hao<sup>1*</sup>, Ruibin Yuan<sup>2,5*</sup>, Jixun Yao<sup>1</sup>, Qixin Deng<sup>3,5</sup>,<br>Xinyi Bai<sup>4,5</sup>, Wei Xue<sup>2</sup>, Lei Xie<sup>1†</sup> |
|
|
</h3> |
|
|
|
|
|
<p> |
|
|
<sup>*</sup>Equal contribution <sup>†</sup>Corresponding author |
|
|
</p> |
|
|
|
|
|
<p> |
|
|
<sup>1</sup>Audio, Speech and Language Processing Group (ASLP@NPU),<br>Northwestern Polytechnical University<br> |
|
|
<sup>2</sup>Hong Kong University of Science and Technology<br> |
|
|
<sup>3</sup>Northwestern University<br> |
|
|
<sup>4</sup>Cornell University<br> |
|
|
<sup>5</sup>Multimodal Art Projection (M-A-P) |
|
|
</p> |
|
|
</div> |
|
|
|
|
|
--- |
|
|
|
|
|
## 🌟 什么是 SongFormBench? |
|
|
|
|
|
SongFormBench 是一个**经过精心整理、由专家标注的基准数据集**,旨在彻底改变音乐结构分析(MSA)的评估方式。我们的数据集为比较 MSA 模型提供了统一标准。 |
|
|
|
|
|
### 📊 数据集构成 |
|
|
|
|
|
- **🎸 SongFormBench-HarmonixSet (BHX)**: 来自 HarmonixSet 的 200 首歌曲 |
|
|
- **🎤 SongFormBench-CN (BC)**: 100 首中文流行歌曲 |
|
|
|
|
|
**总计:300 首高质量标注歌曲** |
|
|
|
|
|
--- |
|
|
|
|
|
## ✨ 主要亮点 |
|
|
|
|
|
### 🎯 **统一评估标准** |
|
|
- 建立了 **标准化基准**,实现 MSA 模型间的公平比较 |
|
|
- 消除了评估协议中的不一致性 |
|
|
|
|
|
### 🏷️ **简单标签系统** |
|
|
- 采用广泛使用的7类分类系统(如 [arxiv.org/abs/2205.14700](https://arxiv.org/abs/2205.14700) 中所述) |
|
|
- 保留 **pre-chorus** 段落以增强粒度 |
|
|
- 可轻松转换为 7 类(pre-chorus → verse)以保证兼容性 |
|
|
|
|
|
### 👨🔬 **专家验证质量** |
|
|
- 多源验证 |
|
|
- 专家标注员手动校正 |
|
|
|
|
|
### 🌏 **多语言覆盖** |
|
|
- **首个中文 MSA 数据集**(100 首歌曲) |
|
|
- 弥补了中文音乐结构分析的空白 |
|
|
- 支持跨语言 MSA 研究 |
|
|
|
|
|
--- |
|
|
|
|
|
## 🚀 快速开始 |
|
|
|
|
|
### 快速加载 |
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
# 加载完整基准数据集 |
|
|
dataset = load_dataset("ASLP-lab/SongFormBench") |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## 📚 资源与链接 |
|
|
|
|
|
- 📖 论文:*即将发布* |
|
|
- 💻 代码:[GitHub 仓库](https://github.com/ASLP-lab/SongFormer) |
|
|
- 🧑💻 模型:[SongFormer](https://huggingface.co/ASLP-lab/SongFormer) |
|
|
- 📂 数据集:[SongFormDB](https://huggingface.co/datasets/ASLP-lab/SongFormDB) |
|
|
|
|
|
--- |
|
|
|
|
|
## 🤝 引用 |
|
|
|
|
|
```bibtex |
|
|
@misc{hao2025songformer, |
|
|
title = {SongFormer: Scaling Music Structure Analysis with Heterogeneous Supervision}, |
|
|
author = {Chunbo Hao and Ruibin Yuan and Jixun Yao and Qixin Deng and Xinyi Bai and Wei Xue and Lei Xie}, |
|
|
year = {2025}, |
|
|
eprint = {2510.02797}, |
|
|
archivePrefix = {arXiv}, |
|
|
primaryClass = {eess.AS}, |
|
|
url = {https://arxiv.org/abs/2510.02797} |
|
|
} |
|
|
``` |
|
|
--- |
|
|
|
|
|
|
|
|
## 🎼 梅尔频谱图细节 |
|
|
|
|
|
<details> |
|
|
<summary>Click to expand/collapse</summary> |
|
|
|
|
|
环境配置可参考 BigVGan 的官方实现。如果音频源失效,可使用以下方法重建音频。 |
|
|
|
|
|
### 🎸 SongFormBench-HarmonixSet |
|
|
使用官方 HarmonixSet 梅尔频谱图。复现方法如下: |
|
|
|
|
|
```bash |
|
|
# 克隆 BigVGAN 仓库 |
|
|
git clone https://github.com/NVIDIA/BigVGAN.git |
|
|
|
|
|
# 进入 utils 目录 |
|
|
cd utils/HarmonixSet |
|
|
|
|
|
# 更新 inference_e2e.sh 中的 BIGVGAN_REPO_DIR |
|
|
# 运行推理脚本 |
|
|
bash inference_e2e.sh |
|
|
``` |
|
|
|
|
|
### 🎤 SongFormBench-CN |
|
|
使用 [**bigvgan_v2_44khz_128band_256x**](https://huggingface.co/nvidia/bigvgan_v2_44khz_128band_256x) 重建。 |
|
|
|
|
|
您应首先下载 bigvgan_v2_44khz_128band_256x,然后将其项目目录添加到 PYTHONPATH 中,之后即可使用以下代码: |
|
|
```python |
|
|
# 查看实现 |
|
|
utils/CN/infer.py |
|
|
``` |
|
|
</details> |
|
|
|
|
|
|
|
|
## 📧 联系方式 |
|
|
|
|
|
如有问题、反馈或合作机会,请访问我们的 [GitHub 仓库](https://github.com/ASLP-lab/SongFormer) 或提交问题。 |