HuBERT Lao ASR

Fine-tuned HuBERT-Large model for Lao automatic speech recognition, achieving 25.37% CER on test data.

Model Details

This model is fine-tuned from facebook/hubert-large-ll60k using the SiangLao/lao-asr-thesis-dataset.

Training Configuration

  • Epochs: 15
  • Batch Size: 12
  • Learning Rate: 3e-5
  • Training Date: June 3, 2025
  • Vocabulary Size: 55 Lao characters + special tokens

Performance

Split CER Loss
Test 25.37% 0.652
Validation 25.16% 0.668

Usage

from transformers import HubertForCTC, Wav2Vec2Processor
import torch
import librosa

# Load model and processor
model = HubertForCTC.from_pretrained("SiangLao/hubert-lao-asr")
processor = Wav2Vec2Processor.from_pretrained("SiangLao/hubert-lao-asr")

# Load audio (must be 16kHz)
audio, sr = librosa.load("audio.wav", sr=16000)

# Generate prediction
inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
with torch.no_grad():
    logits = model(**inputs).logits
    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = processor.batch_decode(predicted_ids)[0]

# Clean transcription
transcription = transcription.replace("<unk>", " ").strip()

print(transcription)

Citation

@thesis{naovalath2025lao,
  title={Lao Automatic Speech Recognition using Transfer Learning},
  author={Souphaxay Naovalath and Sounmy Chanthavong},
  advisor={Dr. Somsack Inthasone},
  school={National University of Laos, Faculty of Natural Sciences, Computer Science Department},
  year={2025}
}
Downloads last month
8
Safetensors
Model size
0.3B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for SiangLao/hubert-lao-asr

Finetuned
(18)
this model

Dataset used to train SiangLao/hubert-lao-asr

Space using SiangLao/hubert-lao-asr 1