NexVeridian's picture
Add files using upload-large-folder tool
3f38f04 verified
metadata
language:
  - en
library_name: mlx
tags:
  - glm
  - MOE
  - pruning
  - compression
  - mlx
license: mit
name: cerebras/Kimi-Linear-REAP-35B-A3B-Instruct
description: >
  This model was obtained by uniformly pruning 30% of experts in
  Kimi-Linear-48B-A3B-Instruct using the REAP method.
readme: >
  https://huggingface.co/cerebras/Kimi-Linear-REAP-35B-A3B-Instruct/main/README.md
pipeline_tag: text-generation
base_model: cerebras/Kimi-Linear-REAP-35B-A3B-Instruct

NexVeridian/Kimi-Linear-REAP-35B-A3B-Instruct-4bit

This model NexVeridian/Kimi-Linear-REAP-35B-A3B-Instruct-4bit was converted to MLX format from cerebras/Kimi-Linear-REAP-35B-A3B-Instruct using mlx-lm version 0.28.4.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("NexVeridian/Kimi-Linear-REAP-35B-A3B-Instruct-4bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)