File size: 11,588 Bytes
2216d16 069410e 850dfb5 069410e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
---
license: cc-by-nc-nd-4.0
---
This repo contains important large files for [PeptiVerse](https://huggingface.co/spaces/ChatterjeeLab/PeptiVerse), an interactive app for peptide property prediction.
- `embeddings` folder contains processed huggingface datasets with peptideCLM embeddings. The `.csv` is the pre-processed data.
- `metrics` folder contains the model performance on the validation data
- `models` host all trained model weights
- `training_data` host all **raw data** to train the classifiers
- `functions` contains files to utilize the trained weights and classifiers
- `train` contains the script to train classifiers on the pre-processed embeddings, either through xgboost or MLPs.
- `scoring_function.py` contains a class that aggregates all trained classifiers for diverse downstream sampling applications
# PeptiVerse 🧬🌌
A collection of machine learning predictors for non-canonical and canonical peptide property prediction for SMILES representation. 🧬 PeptiVerse 🌌 enables evaluation of key biophysical and therapeutic properties of peptides for property-optimized generation.
## Predictors 🧫
PeptiVerse includes the following property predictors:
| Predictor | Measurement | Interpretation | Training Data Source | Dataset Size | Model Type |
|-----------|-------------|-----------------| --------------------|--------------|------------|
| **Non-Hemolysis** | Probability of non-hemolytic behavior | 0-1 scale, higher = less hemolytic | PeptideBERT, PepLand | 6,077 peptides | XGBoost + PeptideCLM embeddings |
| **Solubility** | Probability of aqueous solubility | 0-1 scale, higher = more soluble | PeptideBERT, PepLand | 18,454 peptides | XGBoost + PeptideCLM embeddings |
| **Non-Fouling** | Probability of non-fouling properties | 0-1 scale, higher = lower probability of binding to off-targets | PeptideBERT, PepLand | 17,186 peptides | XGBoost + PeptideCLM embeddings |
| **Permeability** | Cell membrane permeability (PAMPA lipophilicity score log P scale, range -10 to 0) | ≥ −6.0 indicate strong permeability and values < 6.0 indicate weak permeability | ChEMBL (22,040), CycPeptMPDB (7451) | 34,853 peptides | XGBoost + PeptideCLM embeddings + molecular descriptors |
| **Binding Affinity** | Peptide-protein binding strength (-log Kd/Ki/IC50 scale) | Weak binding (< 6.0), medium binding (6.0 − 7.5), and high binding (≥ 7.5) | PepLand | 1806 peptide-protein pairs | Cross-attention transformer (ESM2 + PeptideCLM) |
## Model Performance 🌟
#### Binary Classification Predictors
| Predictor | Val AUC | Val F1 |
|-----------|----------------|----------|
| **Non-Hemolysis** | 0.7902 | 0.8260 |
| **Solubility** | 0.6016 | 0.5767 |
| **Nonfouling** | 0.9327 | 0.8774 |
#### Regression Predictors
| Predictor | Train Correlation (Spearman) | Val Correlation (Spearman) |
|-----------|------------------------------|----------------------------|
| **Permeability** | 0.958 | 0.710 |
| **Binding Affinity** | 0.805 | 0.611 |
## Setup 🌟
1. Clone the repository:
```bash
git clone https://github.com/sophtang/PeptiVerse.git
cd PeptiVerse
```
2. Install environment:
```bash
conda env create -f environment.yml
conda activate peptiverse
```
3. Change the `base_path` in each file to ensure that all model weights and tokenizers are loaded correctly.
## Usage 🌟
#### 1. Hemolysis Prediction
Predicts the probability that a peptide is **not hemolytic**. Higher scores indicate safer peptides.
```python
import sys
sys.path.append('/path/to/PeptiVerse')
from functions.hemolysis.hemolysis import Hemolysis
# Initialize predictor
hemo = Hemolysis()
# Input peptide in SMILES format
peptides = [
"NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC1=CN=C-N1)C(=O)O"
]
# Get predictions
scores = hemo(peptides)
print(f"Non-hemolytic probability: {scores[0]:.3f}")
```
**Output interpretation:**
- Score close to 1.0 = likely non-hemolytic (safe)
- Score close to 0.0 = likely hemolytic (unsafe)
---
#### 2. Solubility Prediction
Predicts aqueous solubility. Higher scores indicate better solubility.
```python
from functions.solubility.solubility import Solubility
# Initialize predictor
sol = Solubility()
# Input peptide
peptides = [
"NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC1=CN=C-N1)C(=O)O"
]
# Get predictions
scores = sol(peptides)
print(f"Solubility probability: {scores[0]:.3f}")
```
**Output interpretation:**
- Score close to 1.0 = highly soluble
- Score close to 0.0 = poorly soluble
---
#### 3. Nonfouling Prediction
Predicts protein resistance/non-fouling properties.
```python
from functions.nonfouling.nonfouling import Nonfouling
# Initialize predictor
nf = Nonfouling()
# Input peptide
peptides = [
"NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC1=CN=C-N1)C(=O)O"
]
# Get predictions
scores = nf(peptides)
print(f"Nonfouling score: {scores[0]:.3f}")
```
**Output interpretation:**
- Higher scores = better non-fouling properties
---
#### 4. Permeability Prediction
Predicts membrane permeability on a log P scale.
```python
from functions.permeability.permeability import Permeability
# Initialize predictor
perm = Permeability()
# Input peptide
peptides = [
"N[C@@H](CCCNC(=N)N)C(=O)N[C@@H](Cc1cNc2c1cc(O)cc2)C(=O)O"
]
# Get predictions
scores = perm(peptides)
print(f"Permeability (log P): {scores[0]:.3f}")
```
**Output interpretation:**
- Higher values = more permeable
- Typical range: -10 to 0 (log scale)
---
#### 5. Binding Affinity Prediction
Predicts peptide-protein binding affinity. Requires both peptide and target protein sequence.
```python
from functions.binding.binding import BindingAffinity
# Target protein sequence (amino acid format)
target_protein = "MTKSNGEEPKMGGRMERFQQGVRKRTLLAKKKVQNITKEDVKSYLFRNAFVLL..."
# Initialize predictor with target protein
binding = BindingAffinity(prot_seq=target_protein)
# Input peptide in SMILES format
peptides = [
"CC[C@H](C)[C@H](NC(=O)[C@H](C)NC(=O)[C@@H](N)Cc1c[nH]cn1)C(=O)O"
]
# Get predictions
scores = binding(peptides)
print(f"Binding affinity (-log Kd): {scores[0]:.3f}")
```
**Output interpretation:**
- Higher values = stronger binding
- Scale: -log(Kd/Ki/IC50)
- 7.5+ = tight binding (≤ ~30nM)
- 6.0-7.5 = medium binding (~30nM - 1μM)
- <6.0 = weak binding (> 1μM)
---
## Batch Processing 🌟
All predictors support batch processing for multiple peptides:
```python
from functions.hemolysis.hemolysis import Hemolysis
hemo = Hemolysis()
# Multiple peptides
peptides = [
"NCC(=O)N[C@H](CS)C(=O)O",
"CC(C)C[C@H](NC(=O)[C@H](CC(C)C)NC(=O)O)C(=O)O",
"N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)O"
]
# Get predictions for all
scores = hemo(peptides)
for i, score in enumerate(scores):
print(f"Peptide {i+1}: {score:.3f}")
```
---
## Unified Scoring with Multiple Predictors 🌟
For convenience, you can use `scoring_functions.py` to evaluate multiple properties at once and get a score vector for each peptide.
### Basic Usage
```python
import sys
sys.path.append('/path/to/PeptiVerse')
from scoring_functions import ScoringFunctions
# Initialize with desired scoring functions
# Available: 'binding_affinity1', 'binding_affinity2', 'permeability',
# 'solubility', 'hemolysis', 'nonfouling'
scoring = ScoringFunctions(
score_func_names=['solubility', 'hemolysis', 'nonfouling', 'permeability'],
prot_seqs=[] # Empty if not using binding affinity
)
# Input peptides in SMILES format
peptides = [
'N2[C@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](Cc1ccccc1)C2(=O)',
'NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)O'
]
# Get scores (returns numpy array of shape: num_peptides x num_functions)
scores = scoring(input_seqs=peptides)
print(scores)
```
### Adding Binding Affinity
```python
from scoring_functions import ScoringFunctions
# Target protein sequence (amino acid format)
tfr_protein = "MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLAVDEEENADNNT..."
# Initialize with binding affinity for one protein
scoring = ScoringFunctions(
score_func_names=['binding_affinity1', 'solubility', 'hemolysis', 'permeability'],
prot_seqs=[tfr_protein] # Provide target protein sequence
)
peptides = ['N2[C@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](Cc1ccccc1)C2(=O)']
scores = scoring(input_seqs=peptides)
# scores[0] will contain: [binding_affinity, solubility, hemolysis, permeability]
print(f"Scores for peptide 1:")
print(f" Binding Affinity: {scores[0][0]:.3f}")
print(f" Solubility: {scores[0][1]:.3f}")
print(f" Hemolysis: {scores[0][2]:.3f}")
print(f" Permeability: {scores[0][3]:.3f}")
```
### Multiple Binding Targets
```python
# For dual binding affinity prediction
protein1 = "MMDQARSAFSNLFGGEPLSYTR..." # First target
protein2 = "MTKSNGEEPKMGGRMERFQQGV..." # Second target
scoring = ScoringFunctions(
score_func_names=['binding_affinity1', 'binding_affinity2', 'solubility', 'hemolysis'],
prot_seqs=[protein1, protein2] # Provide both protein sequences
)
peptides = ['N2[C@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)...']
scores = scoring(input_seqs=peptides)
# scores[0] will contain: [binding_aff1, binding_aff2, solubility, hemolysis]
```
### Output Format
The `ScoringFunctions` class returns a numpy array where:
- **Rows**: Each row corresponds to one input peptide
- **Columns**: Each column corresponds to one scoring function (in the order specified)
```python
# Example with 3 peptides and 4 scoring functions
scores = scoring(input_seqs=peptides)
# Shape: (3, 4)
# scores[0] = [func1_score, func2_score, func3_score, func4_score] for peptide 1
# scores[1] = [func1_score, func2_score, func3_score, func4_score] for peptide 2
# scores[2] = [func1_score, func2_score, func3_score, func4_score] for peptide 3
```
---
## Complete Example 🌟
```python
import sys
sys.path.append('/path/to/PeptiVerse')
from functions.hemolysis.hemolysis import Hemolysis
from functions.solubility.solubility import Solubility
from functions.permeability.permeability import Permeability
# Initialize predictors
hemo = Hemolysis()
sol = Solubility()
perm = Permeability()
# Test peptide
peptide = ["NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)O"]
# Get all predictions
hemo_score = hemo(peptide)[0]
sol_score = sol(peptide)[0]
perm_score = perm(peptide)[0]
print("Peptide Property Predictions:")
print(f" Hemolysis (non-hemolytic prob): {hemo_score:.3f}")
print(f" Solubility: {sol_score:.3f}")
print(f" Permeability: {perm_score:.3f}")
```
---
## Model Architecture 🌟
All predictors use:
- **Embeddings**: PeptideCLM-23M (RoFormer-based peptide language model)
- **Classifier**: XGBoost gradient boosting
- **Input**: SMILES representation of peptides
- **Training**: Models trained on curated datasets with cross-validation
---
## Citation
If you find this repository helpful for your publications, please consider citing our paper:
```
@article{tang2025peptune,
title={Peptune: De novo generation of therapeutic peptides with multi-objective-guided discrete diffusion},
author={Tang, Sophia and Zhang, Yinuo and Chatterjee, Pranam},
journal={42nd International Conference on Machine Learning},
year={2025}
}
```
To use this repository, you agree to abide by the MIT License. |