This repo contains important large files for PeptiVerse, an interactive app for peptide property prediction.

  • embeddings folder contains processed huggingface datasets with peptideCLM embeddings. The .csv is the pre-processed data.
  • metrics folder contains the model performance on the validation data
  • models host all trained model weights
  • training_data host all raw data to train the classifiers
  • functions contains files to utilize the trained weights and classifiers
  • train contains the script to train classifiers on the pre-processed embeddings, either through xgboost or MLPs.
  • scoring_function.py contains a class that aggregates all trained classifiers for diverse downstream sampling applications

PeptiVerse ๐Ÿงฌ๐ŸŒŒ

A collection of machine learning predictors for non-canonical and canonical peptide property prediction for SMILES representation. ๐Ÿงฌ PeptiVerse ๐ŸŒŒ enables evaluation of key biophysical and therapeutic properties of peptides for property-optimized generation.

Predictors ๐Ÿงซ

PeptiVerse includes the following property predictors:

Predictor Measurement Interpretation Training Data Source Dataset Size Model Type
Non-Hemolysis Probability of non-hemolytic behavior 0-1 scale, higher = less hemolytic PeptideBERT, PepLand 6,077 peptides XGBoost + PeptideCLM embeddings
Solubility Probability of aqueous solubility 0-1 scale, higher = more soluble PeptideBERT, PepLand 18,454 peptides XGBoost + PeptideCLM embeddings
Non-Fouling Probability of non-fouling properties 0-1 scale, higher = lower probability of binding to off-targets PeptideBERT, PepLand 17,186 peptides XGBoost + PeptideCLM embeddings
Permeability Cell membrane permeability (PAMPA lipophilicity score log P scale, range -10 to 0) โ‰ฅ โˆ’6.0 indicate strong permeability and values < 6.0 indicate weak permeability ChEMBL (22,040), CycPeptMPDB (7451) 34,853 peptides XGBoost + PeptideCLM embeddings + molecular descriptors
Binding Affinity Peptide-protein binding strength (-log Kd/Ki/IC50 scale) Weak binding (< 6.0), medium binding (6.0 โˆ’ 7.5), and high binding (โ‰ฅ 7.5) PepLand 1806 peptide-protein pairs Cross-attention transformer (ESM2 + PeptideCLM)

Model Performance ๐ŸŒŸ

Binary Classification Predictors

Predictor Val AUC Val F1
Non-Hemolysis 0.7902 0.8260
Solubility 0.6016 0.5767
Nonfouling 0.9327 0.8774

Regression Predictors

Predictor Train Correlation (Spearman) Val Correlation (Spearman)
Permeability 0.958 0.710
Binding Affinity 0.805 0.611

Setup ๐ŸŒŸ

  1. Clone the repository:
git clone https://github.com/sophtang/PeptiVerse.git
cd PeptiVerse
  1. Install environment:
conda env create -f environment.yml

conda activate peptiverse
  1. Change the base_path in each file to ensure that all model weights and tokenizers are loaded correctly.

Usage ๐ŸŒŸ

1. Hemolysis Prediction

Predicts the probability that a peptide is not hemolytic. Higher scores indicate safer peptides.

import sys
sys.path.append('/path/to/PeptiVerse')
from functions.hemolysis.hemolysis import Hemolysis

# Initialize predictor
hemo = Hemolysis()

# Input peptide in SMILES format
peptides = [
    "NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC1=CN=C-N1)C(=O)O"
]

# Get predictions
scores = hemo(peptides)
print(f"Non-hemolytic probability: {scores[0]:.3f}")

Output interpretation:

  • Score close to 1.0 = likely non-hemolytic (safe)
  • Score close to 0.0 = likely hemolytic (unsafe)

2. Solubility Prediction

Predicts aqueous solubility. Higher scores indicate better solubility.

from functions.solubility.solubility import Solubility

# Initialize predictor
sol = Solubility()

# Input peptide
peptides = [
    "NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC1=CN=C-N1)C(=O)O"
]

# Get predictions
scores = sol(peptides)
print(f"Solubility probability: {scores[0]:.3f}")

Output interpretation:

  • Score close to 1.0 = highly soluble
  • Score close to 0.0 = poorly soluble

3. Nonfouling Prediction

Predicts protein resistance/non-fouling properties.

from functions.nonfouling.nonfouling import Nonfouling

# Initialize predictor
nf = Nonfouling()

# Input peptide
peptides = [
    "NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC1=CN=C-N1)C(=O)O"
]

# Get predictions
scores = nf(peptides)
print(f"Nonfouling score: {scores[0]:.3f}")

Output interpretation:

  • Higher scores = better non-fouling properties

4. Permeability Prediction

Predicts membrane permeability on a log P scale.

from functions.permeability.permeability import Permeability

# Initialize predictor
perm = Permeability()

# Input peptide
peptides = [
    "N[C@@H](CCCNC(=N)N)C(=O)N[C@@H](Cc1cNc2c1cc(O)cc2)C(=O)O"
]

# Get predictions
scores = perm(peptides)
print(f"Permeability (log P): {scores[0]:.3f}")

Output interpretation:

  • Higher values = more permeable
  • Typical range: -10 to 0 (log scale)

5. Binding Affinity Prediction

Predicts peptide-protein binding affinity. Requires both peptide and target protein sequence.

from functions.binding.binding import BindingAffinity

# Target protein sequence (amino acid format)
target_protein = "MTKSNGEEPKMGGRMERFQQGVRKRTLLAKKKVQNITKEDVKSYLFRNAFVLL..."

# Initialize predictor with target protein
binding = BindingAffinity(prot_seq=target_protein)

# Input peptide in SMILES format
peptides = [
    "CC[C@H](C)[C@H](NC(=O)[C@H](C)NC(=O)[C@@H](N)Cc1c[nH]cn1)C(=O)O"
]

# Get predictions
scores = binding(peptides)
print(f"Binding affinity (-log Kd): {scores[0]:.3f}")

Output interpretation:

  • Higher values = stronger binding
  • Scale: -log(Kd/Ki/IC50)
    • 7.5+ = tight binding (โ‰ค ~30nM)
    • 6.0-7.5 = medium binding (~30nM - 1ฮผM)
    • <6.0 = weak binding (> 1ฮผM)

Batch Processing ๐ŸŒŸ

All predictors support batch processing for multiple peptides:

from functions.hemolysis.hemolysis import Hemolysis

hemo = Hemolysis()

# Multiple peptides
peptides = [
    "NCC(=O)N[C@H](CS)C(=O)O",
    "CC(C)C[C@H](NC(=O)[C@H](CC(C)C)NC(=O)O)C(=O)O",
    "N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)O"
]

# Get predictions for all
scores = hemo(peptides)

for i, score in enumerate(scores):
    print(f"Peptide {i+1}: {score:.3f}")

Unified Scoring with Multiple Predictors ๐ŸŒŸ

For convenience, you can use scoring_functions.py to evaluate multiple properties at once and get a score vector for each peptide.

Basic Usage

import sys
sys.path.append('/path/to/PeptiVerse')
from scoring_functions import ScoringFunctions

# Initialize with desired scoring functions
# Available: 'binding_affinity1', 'binding_affinity2', 'permeability', 
#            'solubility', 'hemolysis', 'nonfouling'
scoring = ScoringFunctions(
    score_func_names=['solubility', 'hemolysis', 'nonfouling', 'permeability'],
    prot_seqs=[]  # Empty if not using binding affinity
)

# Input peptides in SMILES format
peptides = [
    'N2[C@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](Cc1ccccc1)C2(=O)',
    'NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)O'
]

# Get scores (returns numpy array of shape: num_peptides x num_functions)
scores = scoring(input_seqs=peptides)
print(scores)

Adding Binding Affinity

from scoring_functions import ScoringFunctions

# Target protein sequence (amino acid format)
tfr_protein = "MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLAVDEEENADNNT..."

# Initialize with binding affinity for one protein
scoring = ScoringFunctions(
    score_func_names=['binding_affinity1', 'solubility', 'hemolysis', 'permeability'],
    prot_seqs=[tfr_protein]  # Provide target protein sequence
)

peptides = ['N2[C@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](Cc1ccccc1)C2(=O)']
scores = scoring(input_seqs=peptides)

# scores[0] will contain: [binding_affinity, solubility, hemolysis, permeability]
print(f"Scores for peptide 1:")
print(f"  Binding Affinity: {scores[0][0]:.3f}")
print(f"  Solubility: {scores[0][1]:.3f}")
print(f"  Hemolysis: {scores[0][2]:.3f}")
print(f"  Permeability: {scores[0][3]:.3f}")

Multiple Binding Targets

# For dual binding affinity prediction
protein1 = "MMDQARSAFSNLFGGEPLSYTR..."  # First target
protein2 = "MTKSNGEEPKMGGRMERFQQGV..."  # Second target

scoring = ScoringFunctions(
    score_func_names=['binding_affinity1', 'binding_affinity2', 'solubility', 'hemolysis'],
    prot_seqs=[protein1, protein2]  # Provide both protein sequences
)

peptides = ['N2[C@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)...']
scores = scoring(input_seqs=peptides)

# scores[0] will contain: [binding_aff1, binding_aff2, solubility, hemolysis]

Output Format

The ScoringFunctions class returns a numpy array where:

  • Rows: Each row corresponds to one input peptide
  • Columns: Each column corresponds to one scoring function (in the order specified)
# Example with 3 peptides and 4 scoring functions
scores = scoring(input_seqs=peptides)  
# Shape: (3, 4)
# scores[0] = [func1_score, func2_score, func3_score, func4_score] for peptide 1
# scores[1] = [func1_score, func2_score, func3_score, func4_score] for peptide 2
# scores[2] = [func1_score, func2_score, func3_score, func4_score] for peptide 3

Complete Example ๐ŸŒŸ

import sys
sys.path.append('/path/to/PeptiVerse')
from functions.hemolysis.hemolysis import Hemolysis
from functions.solubility.solubility import Solubility
from functions.permeability.permeability import Permeability

# Initialize predictors
hemo = Hemolysis()
sol = Solubility()
perm = Permeability()

# Test peptide
peptide = ["NCC(=O)N[C@H](CS)C(=O)N[C@@H](CO)C(=O)O"]

# Get all predictions
hemo_score = hemo(peptide)[0]
sol_score = sol(peptide)[0]
perm_score = perm(peptide)[0]

print("Peptide Property Predictions:")
print(f"  Hemolysis (non-hemolytic prob): {hemo_score:.3f}")
print(f"  Solubility: {sol_score:.3f}")
print(f"  Permeability: {perm_score:.3f}")

Model Architecture ๐ŸŒŸ

All predictors use:

  • Embeddings: PeptideCLM-23M (RoFormer-based peptide language model)
  • Classifier: XGBoost gradient boosting
  • Input: SMILES representation of peptides
  • Training: Models trained on curated datasets with cross-validation

Citation

If you find this repository helpful for your publications, please consider citing our paper:

@article{tang2025peptune,
  title={Peptune: De novo generation of therapeutic peptides with multi-objective-guided discrete diffusion},
  author={Tang, Sophia and Zhang, Yinuo and Chatterjee, Pranam},
  journal={42nd International Conference on Machine Learning},
  year={2025}
}

To use this repository, you agree to abide by the MIT License.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support