Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,6 +4,8 @@ import os
|
|
| 4 |
import gradio as gr
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
|
|
|
|
|
|
|
| 7 |
from llm_interface import ERROR_503_DICT # Import error dict
|
| 8 |
from llm_interface import parse_qwen_response, query_qwen_endpoint
|
| 9 |
|
|
@@ -30,13 +32,14 @@ load_dotenv()
|
|
| 30 |
|
| 31 |
# --- Constants ---
|
| 32 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
| 33 |
DATASET_ID = "yjernite/spaces-privacy-reports"
|
| 34 |
CACHE_INFO_MSG = "\n\n*(Report retrieved from cache)*"
|
| 35 |
DEFAULT_SELECTION = "HuggingFaceTB/SmolVLM2"
|
| 36 |
|
| 37 |
TRUNCATION_WARNING = """**⚠️ Warning:** The input data (code and/or prior analysis) was too long for the AI model's context limit and had to be truncated. The analysis below may be incomplete or based on partial information.\n\n---\n\n"""
|
| 38 |
|
| 39 |
-
ERROR_503_USER_MESSAGE = """**
|
| 40 |
|
| 41 |
You have a few options:
|
| 42 |
|
|
@@ -237,9 +240,53 @@ def _run_live_analysis(space_id: str, progress=gr.Progress(track_tqdm=True)):
|
|
| 237 |
gr.update(visible=True, open=False),
|
| 238 |
)
|
| 239 |
|
| 240 |
-
# --- Step 2:
|
| 241 |
-
progress(2 / steps, desc="Step 2/8:
|
| 242 |
-
logging.info("Step 2/8:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
code_files = get_space_code_files(space_id)
|
| 244 |
if not code_files:
|
| 245 |
error_msg = f"Could not retrieve code files for '{space_id}'. Check ID and ensure it's a public Space."
|
|
@@ -252,11 +299,11 @@ def _run_live_analysis(space_id: str, progress=gr.Progress(track_tqdm=True)):
|
|
| 252 |
)
|
| 253 |
return # End generation on error
|
| 254 |
|
| 255 |
-
# --- Step
|
| 256 |
progress(
|
| 257 |
-
|
| 258 |
)
|
| 259 |
-
logging.info("Step
|
| 260 |
yield (
|
| 261 |
gr.update(value="Generating detailed privacy report...", visible=True),
|
| 262 |
gr.update(value="Generating detailed privacy report via AI...", visible=True),
|
|
@@ -307,9 +354,6 @@ def _run_live_analysis(space_id: str, progress=gr.Progress(track_tqdm=True)):
|
|
| 307 |
gr.update(visible=True, open=True),
|
| 308 |
)
|
| 309 |
|
| 310 |
-
# --- Step 4: Extract Model IDs ---
|
| 311 |
-
progress(4 / steps, desc="Step 4/8: Extracting model IDs...")
|
| 312 |
-
logging.info("Step 4/8: Extracting potential model IDs...")
|
| 313 |
|
| 314 |
# --- Step 5: Fetch Model Descriptions ---
|
| 315 |
progress(5 / steps, desc="Step 5/8: Fetching model descriptions...")
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
|
| 7 |
+
from huggingface_hub import HfApi
|
| 8 |
+
|
| 9 |
from llm_interface import ERROR_503_DICT # Import error dict
|
| 10 |
from llm_interface import parse_qwen_response, query_qwen_endpoint
|
| 11 |
|
|
|
|
| 32 |
|
| 33 |
# --- Constants ---
|
| 34 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 35 |
+
ENDPOINT_NAME = "qwen2-5-coder-32b-instruct-pmf"
|
| 36 |
DATASET_ID = "yjernite/spaces-privacy-reports"
|
| 37 |
CACHE_INFO_MSG = "\n\n*(Report retrieved from cache)*"
|
| 38 |
DEFAULT_SELECTION = "HuggingFaceTB/SmolVLM2"
|
| 39 |
|
| 40 |
TRUNCATION_WARNING = """**⚠️ Warning:** The input data (code and/or prior analysis) was too long for the AI model's context limit and had to be truncated. The analysis below may be incomplete or based on partial information.\n\n---\n\n"""
|
| 41 |
|
| 42 |
+
ERROR_503_USER_MESSAGE = """**Service Unavailable**: It appears that the analysis model endpoint is currently down or starting up.
|
| 43 |
|
| 44 |
You have a few options:
|
| 45 |
|
|
|
|
| 240 |
gr.update(visible=True, open=False),
|
| 241 |
)
|
| 242 |
|
| 243 |
+
# --- Step 2: Check Endpoint Status ---
|
| 244 |
+
progress(2 / steps, desc="Step 2/8: Checking endpoint status...")
|
| 245 |
+
logging.info("Step 2/8: Checking endpoint status...")
|
| 246 |
+
yield (
|
| 247 |
+
gr.update(value="Checking whether model endpoint is active...", visible=True),
|
| 248 |
+
gr.update(value="", visible=True),
|
| 249 |
+
gr.update(visible=True, open=True),
|
| 250 |
+
gr.update(visible=True, open=False),
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
endpoint_ready = False
|
| 254 |
+
if HF_TOKEN and HF_INFERENCE_ENDPOINT_URL:
|
| 255 |
+
try:
|
| 256 |
+
api = HfApi(token=HF_TOKEN)
|
| 257 |
+
endpoint = api.get_inference_endpoint(name=ENDPOINT_NAME)
|
| 258 |
+
status = endpoint.status
|
| 259 |
+
|
| 260 |
+
logging.info(f"Endpoint '{ENDPOINT_NAME}' status: {status}")
|
| 261 |
+
|
| 262 |
+
if status == 'running':
|
| 263 |
+
endpoint_ready = True
|
| 264 |
+
else:
|
| 265 |
+
logging.warning(f"Endpoint '{ENDPOINT_NAME}' is not ready (Status: {status}).")
|
| 266 |
+
if status == 'scaledToZero':
|
| 267 |
+
logging.info(f"Endpoint '{ENDPOINT_NAME}' is scaled to zero. Attempting to resume...")
|
| 268 |
+
endpoint.resume()
|
| 269 |
+
msg_503 = f"The status of the Qwen2.5-Coder-32B-Instruct endpoint powering the analysis is currently: {status}\n\n" + ERROR_503_USER_MESSAGE
|
| 270 |
+
yield (
|
| 271 |
+
gr.update(value=msg_503, visible=True),
|
| 272 |
+
gr.update(value="", visible=False),
|
| 273 |
+
gr.update(visible=True, open=True),
|
| 274 |
+
gr.update(visible=False)
|
| 275 |
+
)
|
| 276 |
+
return # Stop analysis, user needs to retry
|
| 277 |
+
except Exception as e:
|
| 278 |
+
logging.error(f"Error checking endpoint status for {ENDPOINT_NAME}: {e}")
|
| 279 |
+
yield (
|
| 280 |
+
gr.update(value=f"Error checking analysis endpoint status: {e}", visible=True),
|
| 281 |
+
gr.update(value="", visible=False),
|
| 282 |
+
gr.update(visible=True, open=True),
|
| 283 |
+
gr.update(visible=False)
|
| 284 |
+
)
|
| 285 |
+
return # Stop analysis
|
| 286 |
+
|
| 287 |
+
# --- Step 3: Fetch Code Files (if not cached) ---
|
| 288 |
+
progress(3 / steps, desc="Step 3/8: Fetching code files...")
|
| 289 |
+
logging.info("Step 3/8: Fetching code files...")
|
| 290 |
code_files = get_space_code_files(space_id)
|
| 291 |
if not code_files:
|
| 292 |
error_msg = f"Could not retrieve code files for '{space_id}'. Check ID and ensure it's a public Space."
|
|
|
|
| 299 |
)
|
| 300 |
return # End generation on error
|
| 301 |
|
| 302 |
+
# --- Step 4: Generate DETAILED Privacy Report (LLM Call 1) ---
|
| 303 |
progress(
|
| 304 |
+
4 / steps, desc="Step 4/8: Generating detailed privacy report (AI Call 1)..."
|
| 305 |
)
|
| 306 |
+
logging.info("Step 4/8: Generating detailed privacy analysis report...")
|
| 307 |
yield (
|
| 308 |
gr.update(value="Generating detailed privacy report...", visible=True),
|
| 309 |
gr.update(value="Generating detailed privacy report via AI...", visible=True),
|
|
|
|
| 354 |
gr.update(visible=True, open=True),
|
| 355 |
)
|
| 356 |
|
|
|
|
|
|
|
|
|
|
| 357 |
|
| 358 |
# --- Step 5: Fetch Model Descriptions ---
|
| 359 |
progress(5 / steps, desc="Step 5/8: Fetching model descriptions...")
|