Spaces:
Running
Running
vidhanm
commited on
Commit
·
7d56bcc
1
Parent(s):
f2f290e
adding print statements in logs
Browse files
app.py
CHANGED
|
@@ -5,134 +5,167 @@ import tempfile # For handling temporary image files
|
|
| 5 |
from typing import Optional
|
| 6 |
from PIL import Image as PILImage
|
| 7 |
import gradio as gr
|
|
|
|
| 8 |
|
| 9 |
-
# Add the cloned nanoVLM directory to Python's system path
|
| 10 |
NANOVLM_REPO_PATH = "/app/nanoVLM"
|
| 11 |
if NANOVLM_REPO_PATH not in sys.path:
|
| 12 |
print(f"DEBUG: Adding {NANOVLM_REPO_PATH} to sys.path")
|
| 13 |
sys.path.insert(0, NANOVLM_REPO_PATH)
|
| 14 |
|
| 15 |
print(f"DEBUG: Python sys.path: {sys.path}")
|
|
|
|
| 16 |
|
| 17 |
-
# Path to the generate.py script within our Docker container
|
| 18 |
GENERATE_SCRIPT_PATH = "/app/nanoVLM/generate.py"
|
| 19 |
-
MODEL_REPO_ID = "lusxvr/nanoVLM-222M"
|
| 20 |
|
| 21 |
print(f"DEBUG: Using generate.py script at: {GENERATE_SCRIPT_PATH}")
|
| 22 |
print(f"DEBUG: Using model repo ID: {MODEL_REPO_ID}")
|
| 23 |
|
| 24 |
-
|
| 25 |
def call_generate_script(image_path: str, prompt_text: str) -> str:
|
| 26 |
-
""
|
| 27 |
-
|
| 28 |
-
""
|
| 29 |
-
print(f"DEBUG (call_generate_script): Calling with image_path='{image_path}', prompt='{prompt_text}'")
|
| 30 |
|
| 31 |
-
# Arguments for generate.py
|
| 32 |
-
#
|
| 33 |
cmd_args = [
|
| 34 |
-
"python", "-u", GENERATE_SCRIPT_PATH,
|
| 35 |
"--hf_model", MODEL_REPO_ID,
|
| 36 |
-
"--
|
| 37 |
"--prompt", prompt_text,
|
| 38 |
-
"--
|
| 39 |
-
"--max_new_tokens", "
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
| 41 |
]
|
| 42 |
|
| 43 |
-
print(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
|
|
|
| 45 |
try:
|
| 46 |
-
# Execute the command
|
| 47 |
-
# capture_output=True, text=True are for Python 3.7+
|
| 48 |
-
# For Python 3.9 (as in your Dockerfile base), this is fine.
|
| 49 |
process = subprocess.run(
|
| 50 |
cmd_args,
|
| 51 |
capture_output=True,
|
| 52 |
text=True,
|
| 53 |
-
check=
|
| 54 |
-
timeout=
|
| 55 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
stdout = process.stdout
|
| 58 |
-
stderr = process.stderr
|
| 59 |
-
|
| 60 |
-
print(f"DEBUG (call_generate_script): generate.py STDOUT:\n{stdout}")
|
| 61 |
-
if stderr:
|
| 62 |
-
print(f"DEBUG (call_generate_script): generate.py STDERR:\n{stderr}")
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
# Outputs:
|
| 67 |
-
#
|
| 68 |
-
# We need to extract "Actual generated text here."
|
| 69 |
-
|
| 70 |
output_lines = stdout.splitlines()
|
| 71 |
-
generated_text = "
|
| 72 |
|
| 73 |
-
|
| 74 |
-
for line in output_lines:
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
return generated_text
|
| 85 |
|
| 86 |
-
except subprocess.
|
| 87 |
-
|
| 88 |
-
print(f"ERROR (
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
print("
|
| 93 |
-
return "Error: Generation script timed out."
|
| 94 |
except Exception as e:
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
traceback.print_exc()
|
| 98 |
-
return f"
|
|
|
|
|
|
|
| 99 |
|
| 100 |
|
| 101 |
def gradio_interface_fn(image_input_pil: Optional[PILImage.Image], prompt_input_str: Optional[str]) -> str:
|
| 102 |
-
print(f"
|
|
|
|
|
|
|
| 103 |
if image_input_pil is None:
|
| 104 |
return "Please upload an image."
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
| 107 |
|
| 108 |
-
|
| 109 |
-
# tempfile.NamedTemporaryFile creates a file that is deleted when closed.
|
| 110 |
-
# We need to ensure it has a .jpg extension for some image libraries if they are picky.
|
| 111 |
-
# The 'delete=False' allows us to close it, pass its name, and then delete it manually.
|
| 112 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp_image_file:
|
| 114 |
image_input_pil.save(tmp_image_file, format="JPEG")
|
| 115 |
tmp_image_path = tmp_image_file.name
|
| 116 |
|
| 117 |
-
print(f"
|
| 118 |
|
| 119 |
-
|
| 120 |
-
result_text = call_generate_script(tmp_image_path, prompt_input_str)
|
| 121 |
|
|
|
|
| 122 |
return result_text
|
| 123 |
|
| 124 |
except Exception as e:
|
| 125 |
-
print(f"ERROR (gradio_interface_fn): Error processing image or calling script: {e}")
|
| 126 |
import traceback; traceback.print_exc()
|
| 127 |
-
return f"An error occurred: {str(e)}"
|
| 128 |
finally:
|
| 129 |
-
|
| 130 |
-
if 'tmp_image_path' in locals() and os.path.exists(tmp_image_path):
|
| 131 |
try:
|
| 132 |
os.remove(tmp_image_path)
|
| 133 |
-
print(f"
|
| 134 |
except Exception as e_remove:
|
| 135 |
-
print(f"WARN
|
|
|
|
| 136 |
|
| 137 |
|
| 138 |
# --- Gradio Interface Definition ---
|
|
@@ -140,6 +173,7 @@ description_md = """
|
|
| 140 |
## nanoVLM-222M Interactive Demo (via generate.py)
|
| 141 |
Upload an image and type a prompt. This interface calls the `generate.py` script from
|
| 142 |
`huggingface/nanoVLM` under the hood to perform inference.
|
|
|
|
| 143 |
"""
|
| 144 |
|
| 145 |
print("DEBUG: Defining Gradio interface...")
|
|
@@ -151,7 +185,7 @@ try:
|
|
| 151 |
gr.Image(type="pil", label="Upload Image"),
|
| 152 |
gr.Textbox(label="Your Prompt / Question", info="e.g., 'describe this image in detail'")
|
| 153 |
],
|
| 154 |
-
outputs=gr.Textbox(label="Generated Text", show_copy_button=True),
|
| 155 |
title="nanoVLM-222M Demo (via Script)",
|
| 156 |
description=description_md,
|
| 157 |
allow_flagging="never"
|
|
@@ -166,13 +200,13 @@ if __name__ == "__main__":
|
|
| 166 |
print("DEBUG: Entered __main__ block for Gradio launch.")
|
| 167 |
if not os.path.exists(GENERATE_SCRIPT_PATH):
|
| 168 |
print(f"CRITICAL ERROR: The script {GENERATE_SCRIPT_PATH} was not found. Cannot launch app.")
|
| 169 |
-
iface = None
|
| 170 |
|
| 171 |
if iface is not None:
|
| 172 |
print("DEBUG: Attempting to launch Gradio interface...")
|
| 173 |
try:
|
| 174 |
iface.launch(server_name="0.0.0.0", server_port=7860)
|
| 175 |
-
print("DEBUG: Gradio launch command issued.")
|
| 176 |
except Exception as e:
|
| 177 |
print(f"CRITICAL ERROR launching Gradio interface: {e}")
|
| 178 |
import traceback; traceback.print_exc()
|
|
|
|
| 5 |
from typing import Optional
|
| 6 |
from PIL import Image as PILImage
|
| 7 |
import gradio as gr
|
| 8 |
+
import time # For timing
|
| 9 |
|
| 10 |
+
# Add the cloned nanoVLM directory to Python's system path
|
| 11 |
NANOVLM_REPO_PATH = "/app/nanoVLM"
|
| 12 |
if NANOVLM_REPO_PATH not in sys.path:
|
| 13 |
print(f"DEBUG: Adding {NANOVLM_REPO_PATH} to sys.path")
|
| 14 |
sys.path.insert(0, NANOVLM_REPO_PATH)
|
| 15 |
|
| 16 |
print(f"DEBUG: Python sys.path: {sys.path}")
|
| 17 |
+
print(f"DEBUG: Gradio version: {gr.__version__}") # Log Gradio version
|
| 18 |
|
|
|
|
| 19 |
GENERATE_SCRIPT_PATH = "/app/nanoVLM/generate.py"
|
| 20 |
+
MODEL_REPO_ID = "lusxvr/nanoVLM-222M"
|
| 21 |
|
| 22 |
print(f"DEBUG: Using generate.py script at: {GENERATE_SCRIPT_PATH}")
|
| 23 |
print(f"DEBUG: Using model repo ID: {MODEL_REPO_ID}")
|
| 24 |
|
|
|
|
| 25 |
def call_generate_script(image_path: str, prompt_text: str) -> str:
|
| 26 |
+
print(f"\n--- DEBUG (call_generate_script) ---")
|
| 27 |
+
print(f"Timestamp: {time.strftime('%Y-%m-%d %H:%M:%S')}")
|
| 28 |
+
print(f"Calling with image_path='{image_path}', prompt='{prompt_text}'")
|
|
|
|
| 29 |
|
| 30 |
+
# Arguments for nanoVLM's generate.py
|
| 31 |
+
# Using low max_new_tokens for CPU testing.
|
| 32 |
cmd_args = [
|
| 33 |
+
"python", "-u", GENERATE_SCRIPT_PATH, # -u for unbuffered output
|
| 34 |
"--hf_model", MODEL_REPO_ID,
|
| 35 |
+
"--image_path", image_path, # Corrected: nanoVLM generate.py uses --image_path
|
| 36 |
"--prompt", prompt_text,
|
| 37 |
+
"--num_samples", "1", # Corrected: Corresponds to --generations
|
| 38 |
+
"--max_new_tokens", "30", # Keep it low for testing
|
| 39 |
+
"--device", "cpu" # Explicitly set device for generate.py
|
| 40 |
+
# Optional args for generate.py:
|
| 41 |
+
# "--temperature", "0.7",
|
| 42 |
+
# "--top_k", "50"
|
| 43 |
]
|
| 44 |
|
| 45 |
+
print(f"Executing command: {' '.join(cmd_args)}")
|
| 46 |
+
|
| 47 |
+
# Realistic timeout for the subprocess. HF Spaces free tier usually times out requests around 60s.
|
| 48 |
+
# Set this shorter to catch issues within app.py.
|
| 49 |
+
SCRIPT_TIMEOUT_SECONDS = 55
|
| 50 |
+
start_time = time.time()
|
| 51 |
|
| 52 |
+
process_details = "Process details not available." # Placeholder
|
| 53 |
try:
|
|
|
|
|
|
|
|
|
|
| 54 |
process = subprocess.run(
|
| 55 |
cmd_args,
|
| 56 |
capture_output=True,
|
| 57 |
text=True,
|
| 58 |
+
check=False, # Set to False to manually check returncode and log output
|
| 59 |
+
timeout=SCRIPT_TIMEOUT_SECONDS
|
| 60 |
)
|
| 61 |
+
process_details = f"PID {process.pid if hasattr(process, 'pid') else 'N/A'}"
|
| 62 |
+
|
| 63 |
+
duration = time.time() - start_time
|
| 64 |
+
print(f"Subprocess ({process_details}) finished in {duration:.2f} seconds.")
|
| 65 |
+
print(f"generate.py RETURN CODE: {process.returncode}")
|
| 66 |
|
| 67 |
+
stdout = process.stdout.strip() if process.stdout else "[No STDOUT from generate.py]"
|
| 68 |
+
stderr = process.stderr.strip() if process.stderr else "[No STDERR from generate.py]"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
print(f"---------- generate.py STDOUT ({process_details}) START ----------\n{stdout}\n---------- generate.py STDOUT ({process_details}) END ----------")
|
| 71 |
+
if stderr or process.returncode != 0:
|
| 72 |
+
print(f"---------- generate.py STDERR ({process_details}) START ----------\n{stderr}\n---------- generate.py STDERR ({process_details}) END ----------")
|
| 73 |
+
|
| 74 |
+
if process.returncode != 0:
|
| 75 |
+
error_message = f"Error: Generation script failed (code {process.returncode})."
|
| 76 |
+
if "out of memory" in stderr.lower(): error_message += " Potential OOM in script."
|
| 77 |
+
print(error_message) # Log it before returning
|
| 78 |
+
return error_message + f" See Space logs for full STDOUT/STDERR from script ({process_details})."
|
| 79 |
+
|
| 80 |
+
# --- Parse the output from nanoVLM's generate.py ---
|
| 81 |
+
# Expected format:
|
| 82 |
# Outputs:
|
| 83 |
+
# > Sample 1: <generated text>
|
|
|
|
|
|
|
| 84 |
output_lines = stdout.splitlines()
|
| 85 |
+
generated_text = "[No parsable output from generate.py]" # Default
|
| 86 |
|
| 87 |
+
found_output_line = False
|
| 88 |
+
for line_idx, line in enumerate(output_lines):
|
| 89 |
+
stripped_line = line.strip()
|
| 90 |
+
# print(f"Parsing STDOUT line {line_idx}: '{stripped_line}'") # Can be very verbose
|
| 91 |
+
if stripped_line.startswith("> Sample 1:") or stripped_line.startswith(">> Generation 1:"):
|
| 92 |
+
prefix_to_remove = ""
|
| 93 |
+
if stripped_line.startswith("> Sample 1:"): prefix_to_remove = "> Sample 1:"
|
| 94 |
+
elif stripped_line.startswith(">> Generation 1: "): prefix_to_remove = ">> Generation 1: " # Note double space
|
| 95 |
+
elif stripped_line.startswith(">> Generation 1: "): prefix_to_remove = ">> Generation 1: " # Note single space
|
| 96 |
+
|
| 97 |
+
if prefix_to_remove:
|
| 98 |
+
generated_text = stripped_line.replace(prefix_to_remove, "", 1).strip()
|
| 99 |
+
found_output_line = True
|
| 100 |
+
print(f"Parsed generated text: '{generated_text}'")
|
| 101 |
+
break
|
| 102 |
|
| 103 |
+
if not found_output_line:
|
| 104 |
+
print(f"Could not find 'Sample 1' or 'Generation 1' line in generate.py output.")
|
| 105 |
+
# Return a snippet of STDOUT if parsing fails, to help debug output format
|
| 106 |
+
generated_text = f"[Parsing failed] STDOUT (first 200 chars): {stdout[:200]}"
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
print(f"Returning parsed text: '{generated_text}'")
|
| 110 |
return generated_text
|
| 111 |
|
| 112 |
+
except subprocess.TimeoutExpired as e:
|
| 113 |
+
duration = time.time() - start_time
|
| 114 |
+
print(f"ERROR: generate.py ({process_details}) timed out after {duration:.2f} seconds (limit: {SCRIPT_TIMEOUT_SECONDS}s).")
|
| 115 |
+
stdout_on_timeout = e.stdout.strip() if e.stdout else "[No STDOUT on timeout]"
|
| 116 |
+
stderr_on_timeout = e.stderr.strip() if e.stderr else "[No STDERR on timeout]"
|
| 117 |
+
print(f"STDOUT on timeout:\n{stdout_on_timeout}")
|
| 118 |
+
print(f"STDERR on timeout:\n{stderr_on_timeout}")
|
| 119 |
+
return f"Error: Generation script timed out after {SCRIPT_TIMEOUT_SECONDS}s. Model loading and generation may be too slow for CPU."
|
| 120 |
except Exception as e:
|
| 121 |
+
duration = time.time() - start_time
|
| 122 |
+
print(f"ERROR: An unexpected error occurred ({process_details}) after {duration:.2f}s: {type(e).__name__} - {e}")
|
| 123 |
+
import traceback; traceback.print_exc()
|
| 124 |
+
return f"Unexpected error calling script: {str(e)}"
|
| 125 |
+
finally:
|
| 126 |
+
print(f"--- END (call_generate_script) ---")
|
| 127 |
|
| 128 |
|
| 129 |
def gradio_interface_fn(image_input_pil: Optional[PILImage.Image], prompt_input_str: Optional[str]) -> str:
|
| 130 |
+
print(f"\nDEBUG (gradio_interface_fn): Timestamp: {time.strftime('%Y-%m-%d %H:%M:%S')}")
|
| 131 |
+
print(f"Received prompt: '{prompt_input_str}', Image type: {type(image_input_pil)}")
|
| 132 |
+
|
| 133 |
if image_input_pil is None:
|
| 134 |
return "Please upload an image."
|
| 135 |
+
|
| 136 |
+
cleaned_prompt = prompt_input_str.strip() if prompt_input_str else ""
|
| 137 |
+
if not cleaned_prompt:
|
| 138 |
+
return "Please provide a non-empty prompt."
|
| 139 |
|
| 140 |
+
tmp_image_path = None
|
|
|
|
|
|
|
|
|
|
| 141 |
try:
|
| 142 |
+
if image_input_pil.mode != "RGB":
|
| 143 |
+
print(f"Converting image from {image_input_pil.mode} to RGB.")
|
| 144 |
+
image_input_pil = image_input_pil.convert("RGB")
|
| 145 |
+
|
| 146 |
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp_image_file:
|
| 147 |
image_input_pil.save(tmp_image_file, format="JPEG")
|
| 148 |
tmp_image_path = tmp_image_file.name
|
| 149 |
|
| 150 |
+
print(f"Temporary image saved to: {tmp_image_path}")
|
| 151 |
|
| 152 |
+
result_text = call_generate_script(tmp_image_path, cleaned_prompt)
|
|
|
|
| 153 |
|
| 154 |
+
print(f"Result from call_generate_script: '{result_text}'")
|
| 155 |
return result_text
|
| 156 |
|
| 157 |
except Exception as e:
|
| 158 |
+
print(f"ERROR (gradio_interface_fn): Error processing image or calling script: {type(e).__name__} - {e}")
|
| 159 |
import traceback; traceback.print_exc()
|
| 160 |
+
return f"An error occurred in Gradio interface function: {str(e)}"
|
| 161 |
finally:
|
| 162 |
+
if tmp_image_path and os.path.exists(tmp_image_path):
|
|
|
|
| 163 |
try:
|
| 164 |
os.remove(tmp_image_path)
|
| 165 |
+
print(f"Temporary image {tmp_image_path} removed.")
|
| 166 |
except Exception as e_remove:
|
| 167 |
+
print(f"WARN: Could not remove temporary image {tmp_image_path}: {e_remove}")
|
| 168 |
+
print(f"DEBUG (gradio_interface_fn): Exiting.")
|
| 169 |
|
| 170 |
|
| 171 |
# --- Gradio Interface Definition ---
|
|
|
|
| 173 |
## nanoVLM-222M Interactive Demo (via generate.py)
|
| 174 |
Upload an image and type a prompt. This interface calls the `generate.py` script from
|
| 175 |
`huggingface/nanoVLM` under the hood to perform inference.
|
| 176 |
+
**Note:** Each request re-loads the model via the script, so it might be slow on CPU.
|
| 177 |
"""
|
| 178 |
|
| 179 |
print("DEBUG: Defining Gradio interface...")
|
|
|
|
| 185 |
gr.Image(type="pil", label="Upload Image"),
|
| 186 |
gr.Textbox(label="Your Prompt / Question", info="e.g., 'describe this image in detail'")
|
| 187 |
],
|
| 188 |
+
outputs=gr.Textbox(label="Generated Text", show_copy_button=True, lines=5),
|
| 189 |
title="nanoVLM-222M Demo (via Script)",
|
| 190 |
description=description_md,
|
| 191 |
allow_flagging="never"
|
|
|
|
| 200 |
print("DEBUG: Entered __main__ block for Gradio launch.")
|
| 201 |
if not os.path.exists(GENERATE_SCRIPT_PATH):
|
| 202 |
print(f"CRITICAL ERROR: The script {GENERATE_SCRIPT_PATH} was not found. Cannot launch app.")
|
| 203 |
+
iface = None
|
| 204 |
|
| 205 |
if iface is not None:
|
| 206 |
print("DEBUG: Attempting to launch Gradio interface...")
|
| 207 |
try:
|
| 208 |
iface.launch(server_name="0.0.0.0", server_port=7860)
|
| 209 |
+
print("DEBUG: Gradio launch command issued. UI should be accessible.")
|
| 210 |
except Exception as e:
|
| 211 |
print(f"CRITICAL ERROR launching Gradio interface: {e}")
|
| 212 |
import traceback; traceback.print_exc()
|