vimmoos@Thor
commited on
Commit
·
c6a28ec
1
Parent(s):
62f50f1
base gym env
Browse files- app.py +276 -0
- old_code/experiment_3/q_networks/buffers/CartPole-v0/1/DQN/memory_buffer.p +0 -0
- poetry.lock +0 -0
- pyproject.toml +1 -0
- udrl/__main__.py +3 -3
- udrl/agent.py +3 -3
- udrl/inference.py +2 -2
- udrl/plot.py +2 -2
- udrl/viz.py +2 -2
app.py
CHANGED
|
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import gymnasium as gym
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import time
|
| 6 |
+
|
| 7 |
+
# Initialize session state variables if they don't exist
|
| 8 |
+
if "env" not in st.session_state:
|
| 9 |
+
st.session_state.env = gym.make("LunarLander-v2", render_mode="rgb_array")
|
| 10 |
+
st.session_state.env.reset()
|
| 11 |
+
st.session_state.frame = st.session_state.env.render()
|
| 12 |
+
if "paused" not in st.session_state:
|
| 13 |
+
st.session_state.paused = False
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# Function to reset the environment
|
| 17 |
+
def reset_environment():
|
| 18 |
+
st.session_state.env.reset()
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Function to toggle pause state
|
| 22 |
+
def toggle_pause():
|
| 23 |
+
st.session_state.paused = not st.session_state.paused
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# Create the Streamlit app
|
| 27 |
+
st.title("Gymnasium Environment Viewer")
|
| 28 |
+
|
| 29 |
+
# Add control buttons in a horizontal layout
|
| 30 |
+
col1, col2 = st.columns(2)
|
| 31 |
+
with col1:
|
| 32 |
+
st.button("Reset Environment", on_click=reset_environment)
|
| 33 |
+
with col2:
|
| 34 |
+
if st.session_state.paused:
|
| 35 |
+
st.button("Resume", on_click=toggle_pause)
|
| 36 |
+
else:
|
| 37 |
+
st.button("Pause", on_click=toggle_pause)
|
| 38 |
+
|
| 39 |
+
# Create a placeholder for the image
|
| 40 |
+
image_placeholder = st.empty()
|
| 41 |
+
|
| 42 |
+
# Create a container for environment info
|
| 43 |
+
sidebar_container = st.sidebar.container()
|
| 44 |
+
|
| 45 |
+
# Main simulation loop using rerun
|
| 46 |
+
if not st.session_state.paused:
|
| 47 |
+
# Take a random action
|
| 48 |
+
action = st.session_state.env.action_space.sample()
|
| 49 |
+
observation, reward, terminated, truncated, info = (
|
| 50 |
+
st.session_state.env.step(action)
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# Render the environment
|
| 54 |
+
st.session_state.frame = st.session_state.env.render()
|
| 55 |
+
|
| 56 |
+
# Reset if the episode is done
|
| 57 |
+
if terminated or truncated:
|
| 58 |
+
st.session_state.env.reset()
|
| 59 |
+
# Display the frame
|
| 60 |
+
if st.session_state.paused:
|
| 61 |
+
image_placeholder.image(
|
| 62 |
+
st.session_state.frame,
|
| 63 |
+
caption="Environment Visualization (Paused)",
|
| 64 |
+
use_column_width=True,
|
| 65 |
+
)
|
| 66 |
+
else:
|
| 67 |
+
image_placeholder.image(
|
| 68 |
+
st.session_state.frame,
|
| 69 |
+
caption="Environment Visualization",
|
| 70 |
+
use_column_width=True,
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
# Display some information about the environment
|
| 74 |
+
with sidebar_container:
|
| 75 |
+
st.header("Environment Info")
|
| 76 |
+
st.write(f"Action Space: {st.session_state.env.action_space}")
|
| 77 |
+
st.write(f"Observation Space: {st.session_state.env.observation_space}")
|
| 78 |
+
|
| 79 |
+
# Add auto-refresh logic
|
| 80 |
+
if not st.session_state.paused:
|
| 81 |
+
time.sleep(0.1) # Add a small delay to control refresh rate
|
| 82 |
+
st.rerun()
|
| 83 |
+
|
| 84 |
+
# fig, ax = plt.subplots()
|
| 85 |
+
# ax.imshow(env.render())
|
| 86 |
+
# st.pyplot(fig)
|
| 87 |
+
# st.image(env.render())
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
# import gymnasium as gym
|
| 91 |
+
# import streamlit as st
|
| 92 |
+
# import numpy as np
|
| 93 |
+
# from udrl.policies import SklearnPolicy
|
| 94 |
+
# from udrl.agent import UpsideDownAgent, AgentHyper
|
| 95 |
+
# from pathlib import Path
|
| 96 |
+
|
| 97 |
+
# # import json
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
# def normalize_value(value, is_bounded, low=None, high=None):
|
| 101 |
+
# return (value - low) / (high - low)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# def visualize_environment(
|
| 105 |
+
# state,
|
| 106 |
+
# env,
|
| 107 |
+
# # paused,
|
| 108 |
+
# feature_importances,
|
| 109 |
+
# epoch,
|
| 110 |
+
# max_epoch=200,
|
| 111 |
+
# ):
|
| 112 |
+
|
| 113 |
+
# st.image(env.render())
|
| 114 |
+
# st.image(e)
|
| 115 |
+
# # Render the Gym environment
|
| 116 |
+
# # env_render = env.render()
|
| 117 |
+
|
| 118 |
+
# # # Display the rendered image using Streamlit
|
| 119 |
+
# # st.image(env_render, caption=f"Epoch {epoch}", use_column_width=True)
|
| 120 |
+
|
| 121 |
+
# # Display feature importances using Streamlit metrics
|
| 122 |
+
# # cols = st.columns(len(feature_importances))
|
| 123 |
+
# # for i, col in enumerate(cols):
|
| 124 |
+
# # col.metric(
|
| 125 |
+
# # label=f"Importance {i}", value=f"{feature_importances[i]:.2f}"
|
| 126 |
+
# # )
|
| 127 |
+
|
| 128 |
+
# # Create buttons using Streamlit
|
| 129 |
+
# # reset_button = st.button("Reset")
|
| 130 |
+
# # pause_play_button = st.button("Pause" if not paused else "Play")
|
| 131 |
+
# # next_button = st.button("Next")
|
| 132 |
+
# # save_button = st.button("Save")
|
| 133 |
+
|
| 134 |
+
# # return reset_button, pause_play_button, next_button, save_button
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
# def run_visualization(
|
| 138 |
+
# env_name,
|
| 139 |
+
# agent,
|
| 140 |
+
# init_desired_return,
|
| 141 |
+
# init_desired_horizon,
|
| 142 |
+
# max_epoch,
|
| 143 |
+
# base_path,
|
| 144 |
+
# ):
|
| 145 |
+
# # base_path = (
|
| 146 |
+
# # Path(base_path) / env_name / agent.policy.estimator.__str__()[:-2]
|
| 147 |
+
# # )
|
| 148 |
+
# # base_path.mkdir(parents=True, exist_ok=True)
|
| 149 |
+
# desired_return = init_desired_return
|
| 150 |
+
# desired_horizon = init_desired_horizon
|
| 151 |
+
|
| 152 |
+
# # Initialize the Gym environment
|
| 153 |
+
# env = gym.make(env_name, render_mode="rgb_array")
|
| 154 |
+
# state, _ = env.reset()
|
| 155 |
+
|
| 156 |
+
# epoch = 0
|
| 157 |
+
# # save_index = 0
|
| 158 |
+
|
| 159 |
+
# # paused = False
|
| 160 |
+
# # step = False
|
| 161 |
+
|
| 162 |
+
# # # Use Streamlit session state to manage paused state
|
| 163 |
+
# # if "paused" not in st.session_state:
|
| 164 |
+
# # st.session_state.paused = False
|
| 165 |
+
|
| 166 |
+
# while True:
|
| 167 |
+
# # Render and display the environment
|
| 168 |
+
# env_render = env.render()
|
| 169 |
+
# # if not st.session_state.pausedor step:
|
| 170 |
+
# command = np.array(
|
| 171 |
+
# [
|
| 172 |
+
# desired_return * agent.conf.return_scale,
|
| 173 |
+
# desired_horizon * agent.conf.horizon_scale,
|
| 174 |
+
# ]
|
| 175 |
+
# )
|
| 176 |
+
# command = np.expand_dims(command, axis=0)
|
| 177 |
+
# state = np.expand_dims(state, axis=0)
|
| 178 |
+
|
| 179 |
+
# action = agent.policy(state, command, True)
|
| 180 |
+
|
| 181 |
+
# ext_state = np.concatenate((state, command), axis=1)
|
| 182 |
+
|
| 183 |
+
# state, reward, done, truncated, info = env.step(action)
|
| 184 |
+
|
| 185 |
+
# feature_importances = {idx: [] for idx in range(ext_state.shape[1])}
|
| 186 |
+
|
| 187 |
+
# for t in agent.policy.estimator.estimators_:
|
| 188 |
+
# branch = np.array(t.decision_path(ext_state).todense(), dtype=bool)
|
| 189 |
+
# imp = t.tree_.impurity[branch[0]]
|
| 190 |
+
|
| 191 |
+
# for f, i in zip(
|
| 192 |
+
# t.tree_.feature[branch[0]][:-1], imp[:-1] - imp[1:]
|
| 193 |
+
# ):
|
| 194 |
+
# feature_importances.setdefault(f, []).append(i)
|
| 195 |
+
|
| 196 |
+
# # Line 8 Algorithm 2
|
| 197 |
+
# desired_return -= reward
|
| 198 |
+
# # Line 9 Algorithm 2
|
| 199 |
+
# desired_horizon = max(desired_horizon - 1, 1)
|
| 200 |
+
|
| 201 |
+
# summed_importances = [
|
| 202 |
+
# sum(feature_importances.get(k, [0.001]))
|
| 203 |
+
# for k in range(len(feature_importances.keys()))
|
| 204 |
+
# ]
|
| 205 |
+
|
| 206 |
+
# epoch += 1
|
| 207 |
+
# visualize_environment(
|
| 208 |
+
# state,
|
| 209 |
+
# env,
|
| 210 |
+
# # st.session_state.paused, # Use session state
|
| 211 |
+
# summed_importances,
|
| 212 |
+
# epoch,
|
| 213 |
+
# max_epoch,
|
| 214 |
+
# )
|
| 215 |
+
# # reset_button, pause_play_button, next_button, save_button = (
|
| 216 |
+
|
| 217 |
+
# # )
|
| 218 |
+
|
| 219 |
+
# if done or truncated:
|
| 220 |
+
# state, _ = env.reset()
|
| 221 |
+
# desired_horizon = init_desired_horizon
|
| 222 |
+
# desired_return = init_desired_return
|
| 223 |
+
# epoch = 0
|
| 224 |
+
|
| 225 |
+
# # step = False
|
| 226 |
+
|
| 227 |
+
# # Handle button clicks
|
| 228 |
+
# # if reset_button:
|
| 229 |
+
# # state, _ = env.reset()
|
| 230 |
+
# # desired_horizon = init_desired_horizon
|
| 231 |
+
# # desired_return = init_desired_return
|
| 232 |
+
# # epoch = 0
|
| 233 |
+
# # elif pause_play_button:
|
| 234 |
+
# # st.session_state.paused = (
|
| 235 |
+
# # not st.session_state.paused
|
| 236 |
+
# # ) # Toggle paused state
|
| 237 |
+
# # elif next_button and st.session_state.paused:
|
| 238 |
+
# # step = True
|
| 239 |
+
# # elif save_button:
|
| 240 |
+
# # # Save image and info using Streamlit
|
| 241 |
+
# # st.image(
|
| 242 |
+
# # env_render, caption=f"Epoch {epoch}", use_column_width=True
|
| 243 |
+
# # )
|
| 244 |
+
# # st.write(
|
| 245 |
+
# # {
|
| 246 |
+
# # "state": {i: str(val) for i, val in enumerate(state)},
|
| 247 |
+
# # "feature": {
|
| 248 |
+
# # i: str(val) for i, val in enumerate(summed_importances)
|
| 249 |
+
# # },
|
| 250 |
+
# # "action": str(action),
|
| 251 |
+
# # "reward": str(reward),
|
| 252 |
+
# # "desired_return": str(desired_return + reward),
|
| 253 |
+
# # "desired_horizon": str(desired_horizon + 1),
|
| 254 |
+
# # }
|
| 255 |
+
# # )
|
| 256 |
+
|
| 257 |
+
# env.close()
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
# env = "Acrobot-v1"
|
| 261 |
+
# desired_return = -79
|
| 262 |
+
# desired_horizon = 82
|
| 263 |
+
# max_epoch = 500
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
# policy = SklearnPolicy.load("policy")
|
| 267 |
+
# hyper = AgentHyper(
|
| 268 |
+
# env,
|
| 269 |
+
# warm_up=0,
|
| 270 |
+
# )
|
| 271 |
+
|
| 272 |
+
# agent = UpsideDownAgent(hyper, policy)
|
| 273 |
+
|
| 274 |
+
# run_visualization(
|
| 275 |
+
# env, agent, desired_return, desired_horizon, max_epoch, "data/viz_examples"
|
| 276 |
+
# )
|
old_code/experiment_3/q_networks/buffers/CartPole-v0/1/DQN/memory_buffer.p
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
poetry.lock
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pyproject.toml
CHANGED
|
@@ -26,6 +26,7 @@ python = "3.10.14"
|
|
| 26 |
scikit-learn = "^1.5.2"
|
| 27 |
matplotlib = "^3.9.2"
|
| 28 |
gymnasium = {extras = ["box2d"], version = "^0.29.1"}
|
|
|
|
| 29 |
scikit-image = "^0.24.0"
|
| 30 |
tqdm = "^4.66.5"
|
| 31 |
torch = "^2.4.1"
|
|
|
|
| 26 |
scikit-learn = "^1.5.2"
|
| 27 |
matplotlib = "^3.9.2"
|
| 28 |
gymnasium = {extras = ["box2d"], version = "^0.29.1"}
|
| 29 |
+
numpy = "1.24.4"
|
| 30 |
scikit-image = "^0.24.0"
|
| 31 |
tqdm = "^4.66.5"
|
| 32 |
torch = "^2.4.1"
|
udrl/__main__.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
-
from .agent import UpsideDownAgent, AgentHyper
|
| 2 |
-
from .policies import SklearnPolicy, NeuralPolicy
|
| 3 |
-
from .catch import CatchAdaptor
|
| 4 |
from dataclasses import dataclass, asdict
|
| 5 |
import gymnasium as gym
|
| 6 |
from tqdm import trange
|
|
|
|
| 1 |
+
from udrl.agent import UpsideDownAgent, AgentHyper
|
| 2 |
+
from udrl.policies import SklearnPolicy, NeuralPolicy
|
| 3 |
+
from udrl.catch import CatchAdaptor
|
| 4 |
from dataclasses import dataclass, asdict
|
| 5 |
import gymnasium as gym
|
| 6 |
from tqdm import trange
|
udrl/agent.py
CHANGED
|
@@ -2,9 +2,9 @@ from dataclasses import dataclass
|
|
| 2 |
import gymnasium as gym
|
| 3 |
import numpy as np
|
| 4 |
|
| 5 |
-
from .catch import CatchAdaptor
|
| 6 |
-
from .policies import ABCPolicy
|
| 7 |
-
from .buffer import ReplayBuffer
|
| 8 |
|
| 9 |
|
| 10 |
@dataclass
|
|
|
|
| 2 |
import gymnasium as gym
|
| 3 |
import numpy as np
|
| 4 |
|
| 5 |
+
from udrl.catch import CatchAdaptor
|
| 6 |
+
from udrl.policies import ABCPolicy
|
| 7 |
+
from udrl.buffer import ReplayBuffer
|
| 8 |
|
| 9 |
|
| 10 |
@dataclass
|
udrl/inference.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import matplotlib.pyplot as plt
|
| 2 |
import numpy as np
|
| 3 |
-
from .policies import SklearnPolicy, NeuralPolicy
|
| 4 |
-
from .agent import UpsideDownAgent, AgentHyper
|
| 5 |
from pathlib import Path
|
| 6 |
from collections import Counter
|
| 7 |
from tqdm import trange
|
|
|
|
| 1 |
import matplotlib.pyplot as plt
|
| 2 |
import numpy as np
|
| 3 |
+
from udrl.policies import SklearnPolicy, NeuralPolicy
|
| 4 |
+
from udrl.agent import UpsideDownAgent, AgentHyper
|
| 5 |
from pathlib import Path
|
| 6 |
from collections import Counter
|
| 7 |
from tqdm import trange
|
udrl/plot.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
from .policies import SklearnPolicy
|
| 2 |
-
from .agent import UpsideDownAgent, AgentHyper
|
| 3 |
from pathlib import Path
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import numpy as np
|
|
|
|
| 1 |
+
from udrl.policies import SklearnPolicy
|
| 2 |
+
from udrl.agent import UpsideDownAgent, AgentHyper
|
| 3 |
from pathlib import Path
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import numpy as np
|
udrl/viz.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
import gymnasium as gym
|
| 2 |
import pygame
|
| 3 |
import numpy as np
|
| 4 |
-
from .policies import SklearnPolicy
|
| 5 |
-
from .agent import UpsideDownAgent, AgentHyper
|
| 6 |
from pathlib import Path
|
| 7 |
import json
|
| 8 |
|
|
|
|
| 1 |
import gymnasium as gym
|
| 2 |
import pygame
|
| 3 |
import numpy as np
|
| 4 |
+
from udrl.policies import SklearnPolicy
|
| 5 |
+
from udrl.agent import UpsideDownAgent, AgentHyper
|
| 6 |
from pathlib import Path
|
| 7 |
import json
|
| 8 |
|