Spaces:
Runtime error
Runtime error
add app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import torchvision
|
| 5 |
+
import torchvision.transforms
|
| 6 |
+
|
| 7 |
+
import torchxrayvision as xrv
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def classify_image(img, model_name):
|
| 11 |
+
|
| 12 |
+
model = xrv.models.get_model(model_name, from_hf_hub=True)
|
| 13 |
+
|
| 14 |
+
img = xrv.datasets.normalize(img, 255)
|
| 15 |
+
|
| 16 |
+
# Check that images are 2D arrays
|
| 17 |
+
if len(img.shape) > 2:
|
| 18 |
+
img = img[:, :, 0]
|
| 19 |
+
if len(img.shape) < 2:
|
| 20 |
+
print("error, dimension lower than 2 for image")
|
| 21 |
+
|
| 22 |
+
# Add color channel
|
| 23 |
+
img = img[None, :, :]
|
| 24 |
+
|
| 25 |
+
transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop()])
|
| 26 |
+
|
| 27 |
+
img = transform(img)
|
| 28 |
+
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
img = torch.from_numpy(img).unsqueeze(0)
|
| 31 |
+
preds = model(img).cpu()
|
| 32 |
+
output = {
|
| 33 |
+
k: float(v)
|
| 34 |
+
for k, v in zip(xrv.datasets.default_pathologies, preds[0].detach().numpy())
|
| 35 |
+
}
|
| 36 |
+
return output
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
gr.Interface(
|
| 40 |
+
fn=classify_image,
|
| 41 |
+
inputs=[
|
| 42 |
+
gr.Image(shape=(224, 224), image_mode="L"),
|
| 43 |
+
gr.Dropdown(
|
| 44 |
+
[
|
| 45 |
+
"densenet121-res224-all",
|
| 46 |
+
"densenet121-res224-nih",
|
| 47 |
+
"densenet121-res224-pc",
|
| 48 |
+
"densenet121-res224-chex",
|
| 49 |
+
"densenet121-res224-rsna",
|
| 50 |
+
"densenet121-res224-mimic_nb",
|
| 51 |
+
"densenet121-res224-mimic_ch",
|
| 52 |
+
"resnet50-res512-all",
|
| 53 |
+
],
|
| 54 |
+
value="densenet121-res224-all",
|
| 55 |
+
type="value",
|
| 56 |
+
label="Pre-trained model",
|
| 57 |
+
),
|
| 58 |
+
],
|
| 59 |
+
outputs=gr.outputs.Label(),
|
| 60 |
+
title="Classify chest x-ray image",
|
| 61 |
+
examples=[
|
| 62 |
+
["16747_3_1.jpg", "densenet121-res224-all"],
|
| 63 |
+
["00000001_000.png", "resnet50-res512-all"],
|
| 64 |
+
],
|
| 65 |
+
).launch()
|