Spaces:
Sleeping
Sleeping
| import random | |
| import numpy as np | |
| import torch.distributed as dist | |
| from torch.utils.data import Sampler | |
| class MultiScaleSampler(Sampler): | |
| def __init__( | |
| self, | |
| data_source, | |
| scales, | |
| first_bs=128, | |
| fix_bs=True, | |
| divided_factor=[8, 16], | |
| is_training=True, | |
| ratio_wh=0.8, | |
| max_w=480.0, | |
| seed=None, | |
| ): | |
| """ | |
| multi scale samper | |
| Args: | |
| data_source(dataset) | |
| scales(list): several scales for image resolution | |
| first_bs(int): batch size for the first scale in scales | |
| divided_factor(list[w, h]): ImageNet models down-sample images by a factor, ensure that width and height dimensions are multiples are multiple of devided_factor. | |
| is_training(boolean): mode | |
| """ | |
| # min. and max. spatial dimensions | |
| self.data_source = data_source | |
| self.data_idx_order_list = np.array(data_source.data_idx_order_list) | |
| self.ds_width = data_source.ds_width | |
| self.seed = data_source.seed | |
| if self.ds_width: | |
| self.wh_ratio = data_source.wh_ratio | |
| self.wh_ratio_sort = data_source.wh_ratio_sort | |
| self.n_data_samples = len(self.data_source) | |
| self.ratio_wh = ratio_wh | |
| self.max_w = max_w | |
| if isinstance(scales[0], list): | |
| width_dims = [i[0] for i in scales] | |
| height_dims = [i[1] for i in scales] | |
| elif isinstance(scales[0], int): | |
| width_dims = scales | |
| height_dims = scales | |
| base_im_w = width_dims[0] | |
| base_im_h = height_dims[0] | |
| base_batch_size = first_bs | |
| # Get the GPU and node related information | |
| if dist.is_initialized(): | |
| num_replicas = dist.get_world_size() | |
| rank = dist.get_rank() | |
| else: | |
| num_replicas = 1 | |
| rank = 0 | |
| # adjust the total samples to avoid batch dropping | |
| num_samples_per_replica = int(self.n_data_samples * 1.0 / num_replicas) | |
| img_indices = [idx for idx in range(self.n_data_samples)] | |
| self.shuffle = False | |
| if is_training: | |
| # compute the spatial dimensions and corresponding batch size | |
| # ImageNet models down-sample images by a factor of 32. | |
| # Ensure that width and height dimensions are multiples are multiple of 32. | |
| width_dims = [ | |
| int((w // divided_factor[0]) * divided_factor[0]) | |
| for w in width_dims | |
| ] | |
| height_dims = [ | |
| int((h // divided_factor[1]) * divided_factor[1]) | |
| for h in height_dims | |
| ] | |
| img_batch_pairs = list() | |
| base_elements = base_im_w * base_im_h * base_batch_size | |
| for h, w in zip(height_dims, width_dims): | |
| if fix_bs: | |
| batch_size = base_batch_size | |
| else: | |
| batch_size = int(max(1, (base_elements / (h * w)))) | |
| img_batch_pairs.append((w, h, batch_size)) | |
| self.img_batch_pairs = img_batch_pairs | |
| self.shuffle = True | |
| else: | |
| self.img_batch_pairs = [(base_im_w, base_im_h, base_batch_size)] | |
| self.img_indices = img_indices | |
| self.n_samples_per_replica = num_samples_per_replica | |
| self.epoch = 0 | |
| self.rank = rank | |
| self.num_replicas = num_replicas | |
| self.batch_list = [] | |
| self.current = 0 | |
| last_index = num_samples_per_replica * num_replicas | |
| indices_rank_i = self.img_indices[self.rank:last_index:self. | |
| num_replicas] | |
| while self.current < self.n_samples_per_replica: | |
| for curr_w, curr_h, curr_bsz in self.img_batch_pairs: | |
| end_index = min(self.current + curr_bsz, | |
| self.n_samples_per_replica) | |
| batch_ids = indices_rank_i[self.current:end_index] | |
| n_batch_samples = len(batch_ids) | |
| if n_batch_samples != curr_bsz: | |
| batch_ids += indices_rank_i[:(curr_bsz - n_batch_samples)] | |
| self.current += curr_bsz | |
| if len(batch_ids) > 0: | |
| batch = [curr_w, curr_h, len(batch_ids)] | |
| self.batch_list.append(batch) | |
| random.shuffle(self.batch_list) | |
| self.length = len(self.batch_list) | |
| self.batchs_in_one_epoch = self.iter() | |
| self.batchs_in_one_epoch_id = [ | |
| i for i in range(len(self.batchs_in_one_epoch)) | |
| ] | |
| def __iter__(self): | |
| if self.seed is None: | |
| random.seed(self.epoch) | |
| self.epoch += 1 | |
| else: | |
| random.seed(self.seed) | |
| random.shuffle(self.batchs_in_one_epoch_id) | |
| for batch_tuple_id in self.batchs_in_one_epoch_id: | |
| yield self.batchs_in_one_epoch[batch_tuple_id] | |
| def iter(self): | |
| if self.shuffle: | |
| if self.seed is not None: | |
| random.seed(self.seed) | |
| else: | |
| random.seed(self.epoch) | |
| if not self.ds_width: | |
| random.shuffle(self.img_indices) | |
| random.shuffle(self.img_batch_pairs) | |
| indices_rank_i = self.img_indices[ | |
| self.rank:len(self.img_indices):self.num_replicas] | |
| else: | |
| indices_rank_i = self.img_indices[ | |
| self.rank:len(self.img_indices):self.num_replicas] | |
| start_index = 0 | |
| batchs_in_one_epoch = [] | |
| for batch_tuple in self.batch_list: | |
| curr_w, curr_h, curr_bsz = batch_tuple | |
| end_index = min(start_index + curr_bsz, self.n_samples_per_replica) | |
| batch_ids = indices_rank_i[start_index:end_index] | |
| n_batch_samples = len(batch_ids) | |
| if n_batch_samples != curr_bsz: | |
| batch_ids += indices_rank_i[:(curr_bsz - n_batch_samples)] | |
| start_index += curr_bsz | |
| if len(batch_ids) > 0: | |
| if self.ds_width: | |
| wh_ratio_current = self.wh_ratio[ | |
| self.wh_ratio_sort[batch_ids]] | |
| ratio_current = wh_ratio_current.mean() | |
| ratio_current = ratio_current if ratio_current * curr_h < self.max_w else self.max_w / curr_h | |
| else: | |
| ratio_current = None | |
| batch = [(curr_w, curr_h, b_id, ratio_current) | |
| for b_id in batch_ids] | |
| # yield batch | |
| batchs_in_one_epoch.append(batch) | |
| return batchs_in_one_epoch | |
| def set_epoch(self, epoch: int): | |
| self.epoch = epoch | |
| def __len__(self): | |
| return self.length | |