duyongkun
update app
5de2f8f
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/iaa_augment.py
"""
import os
# Prevent automatic updates in Albumentations for stability in augmentation behavior
os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1'
import numpy as np
import albumentations as A
from albumentations.core.transforms_interface import DualTransform
from albumentations.augmentations.geometric import functional as fgeometric
from packaging import version
ALBU_VERSION = version.parse(A.__version__)
IS_ALBU_NEW_VERSION = ALBU_VERSION >= version.parse('1.4.15')
# Custom resize transformation mimicking Imgaug's behavior with scaling
class ImgaugLikeResize(DualTransform):
def __init__(self, scale_range=(0.5, 3.0), interpolation=1, p=1.0):
super(ImgaugLikeResize, self).__init__(p)
self.scale_range = scale_range
self.interpolation = interpolation
# Resize the image based on a randomly chosen scale within the scale range
def apply(self, img, scale=1.0, **params):
height, width = img.shape[:2]
new_height = int(height * scale)
new_width = int(width * scale)
if IS_ALBU_NEW_VERSION:
return fgeometric.resize(img, (new_height, new_width),
interpolation=self.interpolation)
return fgeometric.resize(img,
new_height,
new_width,
interpolation=self.interpolation)
# Apply the same scaling transformation to keypoints (e.g., polygon points)
def apply_to_keypoints(self, keypoints, scale=1.0, **params):
return np.array([(x * scale, y * scale) + tuple(rest)
for x, y, *rest in keypoints])
# Get random scale parameter within the specified range
def get_params(self):
scale = np.random.uniform(self.scale_range[0], self.scale_range[1])
return {'scale': scale}
# Builder class to translate custom augmenter arguments into Albumentations-compatible format
class AugmenterBuilder(object):
def __init__(self):
# Map common Imgaug transformations to equivalent Albumentations transforms
self.imgaug_to_albu = {
'Fliplr': 'HorizontalFlip',
'Flipud': 'VerticalFlip',
'Affine': 'Affine',
# Additional mappings can be added here if needed
}
# Recursive method to construct augmentation pipeline based on provided arguments
def build(self, args, root=True):
if args is None or len(args) == 0:
return None
elif isinstance(args, list):
# Build the full augmentation sequence if it's a root-level call
if root:
sequence = [self.build(value, root=False) for value in args]
return A.Compose(
sequence,
keypoint_params=A.KeypointParams(format='xy',
remove_invisible=False),
)
else:
# Build individual augmenters for nested arguments
augmenter_type = args[0]
augmenter_args = args[1] if len(args) > 1 else {}
augmenter_args_mapped = self.map_arguments(
augmenter_type, augmenter_args)
augmenter_type_mapped = self.imgaug_to_albu.get(
augmenter_type, augmenter_type)
if augmenter_type_mapped == 'Resize':
return ImgaugLikeResize(**augmenter_args_mapped)
else:
cls = getattr(A, augmenter_type_mapped)
return cls(
**{
k: self.to_tuple_if_list(v)
for k, v in augmenter_args_mapped.items()
})
elif isinstance(args, dict):
# Process individual transformation specified as dictionary
augmenter_type = args['type']
augmenter_args = args.get('args', {})
augmenter_args_mapped = self.map_arguments(augmenter_type,
augmenter_args)
augmenter_type_mapped = self.imgaug_to_albu.get(
augmenter_type, augmenter_type)
if augmenter_type_mapped == 'Resize':
return ImgaugLikeResize(**augmenter_args_mapped)
else:
cls = getattr(A, augmenter_type_mapped)
return cls(
**{
k: self.to_tuple_if_list(v)
for k, v in augmenter_args_mapped.items()
})
else:
raise RuntimeError('Unknown augmenter arg: ' + str(args))
# Map arguments to expected format for each augmenter type
def map_arguments(self, augmenter_type, augmenter_args):
augmenter_args = augmenter_args.copy(
) # Avoid modifying the original arguments
if augmenter_type == 'Resize':
# Ensure size is a valid 2-element list or tuple
size = augmenter_args.get('size')
if size:
if not isinstance(size, (list, tuple)) or len(size) != 2:
raise ValueError(
f"'size' must be a list or tuple of two numbers, but got {size}"
)
min_scale, max_scale = size
return {
'scale_range': (min_scale, max_scale),
'interpolation': 1, # Linear interpolation
'p': 1.0,
}
else:
return {
'scale_range': (1.0, 1.0),
'interpolation': 1,
'p': 1.0
}
elif augmenter_type == 'Affine':
# Map rotation to a tuple and ensure p=1.0 to apply transformation
rotate = augmenter_args.get('rotate', 0)
if isinstance(rotate, list):
rotate = tuple(rotate)
elif isinstance(rotate, (int, float)):
rotate = (float(rotate), float(rotate))
augmenter_args['rotate'] = rotate
augmenter_args['p'] = 1.0
return augmenter_args
else:
# For other augmenters, ensure 'p' probability is specified
p = augmenter_args.get('p', 1.0)
augmenter_args['p'] = p
return augmenter_args
# Convert lists to tuples for Albumentations compatibility
def to_tuple_if_list(self, obj):
if isinstance(obj, list):
return tuple(obj)
return obj
# Wrapper class for image and polygon transformations using Imgaug-style augmentation
class IaaAugment:
def __init__(self, augmenter_args=None, **kwargs):
if augmenter_args is None:
# Default augmenters if none are specified
augmenter_args = [
{
'type': 'Fliplr',
'args': {
'p': 0.5
}
},
{
'type': 'Affine',
'args': {
'rotate': [-10, 10]
}
},
{
'type': 'Resize',
'args': {
'size': [0.5, 3]
}
},
]
self.augmenter = AugmenterBuilder().build(augmenter_args)
# Apply the augmentations to image and polygon data
def __call__(self, data):
image = data['image']
if self.augmenter:
# Flatten polygons to individual keypoints for transformation
keypoints = []
keypoints_lengths = []
for poly in data['polys']:
keypoints.extend([tuple(point) for point in poly])
keypoints_lengths.append(len(poly))
# Apply the augmentation pipeline to image and keypoints
transformed = self.augmenter(image=image, keypoints=keypoints)
data['image'] = transformed['image']
# Extract transformed keypoints and reconstruct polygon structures
transformed_keypoints = transformed['keypoints']
# Reassemble polygons from transformed keypoints
new_polys = []
idx = 0
for length in keypoints_lengths:
new_poly = transformed_keypoints[idx:idx + length]
new_polys.append(np.array([kp[:2] for kp in new_poly]))
idx += length
data['polys'] = np.array(new_polys)
return data