Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import json | |
| import cv2 | |
| np.seterr(divide='ignore', invalid='ignore') | |
| import pyclipper | |
| from shapely.geometry import Polygon | |
| import warnings | |
| warnings.simplefilter('ignore') | |
| class DetLabelEncode(object): | |
| def __init__(self, **kwargs): | |
| pass | |
| def __call__(self, data): | |
| label = data['label'] | |
| label = json.loads(label) | |
| nBox = len(label) | |
| boxes, txts, txt_tags = [], [], [] | |
| for bno in range(0, nBox): | |
| box = label[bno]['points'] | |
| txt = label[bno]['transcription'] | |
| boxes.append(box) | |
| txts.append(txt) | |
| if txt in ['*', '###']: | |
| txt_tags.append(True) | |
| else: | |
| txt_tags.append(False) | |
| if len(boxes) == 0: | |
| return None | |
| boxes = self.expand_points_num(boxes) | |
| boxes = np.array(boxes, dtype=np.float32) | |
| txt_tags = np.array(txt_tags, dtype=np.bool_) | |
| data['polys'] = boxes | |
| data['texts'] = txts | |
| data['ignore_tags'] = txt_tags | |
| return data | |
| def order_points_clockwise(self, pts): | |
| rect = np.zeros((4, 2), dtype='float32') | |
| s = pts.sum(axis=1) | |
| rect[0] = pts[np.argmin(s)] | |
| rect[2] = pts[np.argmax(s)] | |
| tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0) | |
| diff = np.diff(np.array(tmp), axis=1) | |
| rect[1] = tmp[np.argmin(diff)] | |
| rect[3] = tmp[np.argmax(diff)] | |
| return rect | |
| def expand_points_num(self, boxes): | |
| max_points_num = 0 | |
| for box in boxes: | |
| if len(box) > max_points_num: | |
| max_points_num = len(box) | |
| ex_boxes = [] | |
| for box in boxes: | |
| ex_box = box + [box[-1]] * (max_points_num - len(box)) | |
| ex_boxes.append(ex_box) | |
| return ex_boxes | |
| class MakeBorderMap(object): | |
| def __init__(self, | |
| shrink_ratio=0.4, | |
| thresh_min=0.3, | |
| thresh_max=0.7, | |
| **kwargs): | |
| self.shrink_ratio = shrink_ratio | |
| self.thresh_min = thresh_min | |
| self.thresh_max = thresh_max | |
| if 'total_epoch' in kwargs and 'epoch' in kwargs and kwargs[ | |
| 'epoch'] != 'None': | |
| self.shrink_ratio = self.shrink_ratio + 0.2 * kwargs[ | |
| 'epoch'] / float(kwargs['total_epoch']) | |
| def __call__(self, data): | |
| img = data['image'] | |
| text_polys = data['polys'] | |
| ignore_tags = data['ignore_tags'] | |
| canvas = np.zeros(img.shape[:2], dtype=np.float32) | |
| mask = np.zeros(img.shape[:2], dtype=np.float32) | |
| for i in range(len(text_polys)): | |
| if ignore_tags[i]: | |
| continue | |
| self.draw_border_map(text_polys[i], canvas, mask=mask) | |
| canvas = canvas * (self.thresh_max - self.thresh_min) + self.thresh_min | |
| data['threshold_map'] = canvas | |
| data['threshold_mask'] = mask | |
| return data | |
| def draw_border_map(self, polygon, canvas, mask): | |
| polygon = np.array(polygon) | |
| assert polygon.ndim == 2 | |
| assert polygon.shape[1] == 2 | |
| polygon_shape = Polygon(polygon) | |
| if polygon_shape.area <= 0: | |
| return | |
| distance = (polygon_shape.area * (1 - np.power(self.shrink_ratio, 2)) / | |
| polygon_shape.length) | |
| subject = [tuple(l) for l in polygon] | |
| padding = pyclipper.PyclipperOffset() | |
| padding.AddPath(subject, pyclipper.JT_ROUND, | |
| pyclipper.ET_CLOSEDPOLYGON) | |
| padded_polygon = np.array(padding.Execute(distance)[0]) | |
| cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0) | |
| xmin = padded_polygon[:, 0].min() | |
| xmax = padded_polygon[:, 0].max() | |
| ymin = padded_polygon[:, 1].min() | |
| ymax = padded_polygon[:, 1].max() | |
| width = xmax - xmin + 1 | |
| height = ymax - ymin + 1 | |
| polygon[:, 0] = polygon[:, 0] - xmin | |
| polygon[:, 1] = polygon[:, 1] - ymin | |
| xs = np.broadcast_to( | |
| np.linspace(0, width - 1, num=width).reshape(1, width), | |
| (height, width)) | |
| ys = np.broadcast_to( | |
| np.linspace(0, height - 1, num=height).reshape(height, 1), | |
| (height, width)) | |
| distance_map = np.zeros((polygon.shape[0], height, width), | |
| dtype=np.float32) | |
| for i in range(polygon.shape[0]): | |
| j = (i + 1) % polygon.shape[0] | |
| absolute_distance = self._distance(xs, ys, polygon[i], polygon[j]) | |
| distance_map[i] = np.clip(absolute_distance / distance, 0, 1) | |
| distance_map = distance_map.min(axis=0) | |
| xmin_valid = min(max(0, xmin), canvas.shape[1] - 1) | |
| xmax_valid = min(max(0, xmax), canvas.shape[1] - 1) | |
| ymin_valid = min(max(0, ymin), canvas.shape[0] - 1) | |
| ymax_valid = min(max(0, ymax), canvas.shape[0] - 1) | |
| canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1] = np.fmax( | |
| 1 - distance_map[ymin_valid - ymin:ymax_valid - ymax + height, | |
| xmin_valid - xmin:xmax_valid - xmax + width, ], | |
| canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1], | |
| ) | |
| def _distance(self, xs, ys, point_1, point_2): | |
| """ | |
| compute the distance from point to a line | |
| ys: coordinates in the first axis | |
| xs: coordinates in the second axis | |
| point_1, point_2: (x, y), the end of the line | |
| """ | |
| height, width = xs.shape[:2] | |
| square_distance_1 = np.square(xs - point_1[0]) + np.square(ys - | |
| point_1[1]) | |
| square_distance_2 = np.square(xs - point_2[0]) + np.square(ys - | |
| point_2[1]) | |
| square_distance = np.square(point_1[0] - | |
| point_2[0]) + np.square(point_1[1] - | |
| point_2[1]) | |
| cosin = (square_distance - square_distance_1 - square_distance_2) / ( | |
| 2 * np.sqrt(square_distance_1 * square_distance_2)) | |
| square_sin = 1 - np.square(cosin) | |
| square_sin = np.nan_to_num(square_sin) | |
| result = np.sqrt(square_distance_1 * square_distance_2 * square_sin / | |
| square_distance) | |
| result[cosin < 0] = np.sqrt( | |
| np.fmin(square_distance_1, square_distance_2))[cosin < 0] | |
| # self.extend_line(point_1, point_2, result) | |
| return result | |
| def extend_line(self, point_1, point_2, result, shrink_ratio): | |
| ex_point_1 = ( | |
| int( | |
| round(point_1[0] + (point_1[0] - point_2[0]) * | |
| (1 + shrink_ratio))), | |
| int( | |
| round(point_1[1] + (point_1[1] - point_2[1]) * | |
| (1 + shrink_ratio))), | |
| ) | |
| cv2.line( | |
| result, | |
| tuple(ex_point_1), | |
| tuple(point_1), | |
| 4096.0, | |
| 1, | |
| lineType=cv2.LINE_AA, | |
| shift=0, | |
| ) | |
| ex_point_2 = ( | |
| int( | |
| round(point_2[0] + (point_2[0] - point_1[0]) * | |
| (1 + shrink_ratio))), | |
| int( | |
| round(point_2[1] + (point_2[1] - point_1[1]) * | |
| (1 + shrink_ratio))), | |
| ) | |
| cv2.line( | |
| result, | |
| tuple(ex_point_2), | |
| tuple(point_2), | |
| 4096.0, | |
| 1, | |
| lineType=cv2.LINE_AA, | |
| shift=0, | |
| ) | |
| return ex_point_1, ex_point_2 | |
| class MakeShrinkMap(object): | |
| r""" | |
| Making binary mask from detection data with ICDAR format. | |
| Typically following the process of class `MakeICDARData`. | |
| """ | |
| def __init__(self, min_text_size=8, shrink_ratio=0.4, **kwargs): | |
| self.min_text_size = min_text_size | |
| self.shrink_ratio = shrink_ratio | |
| if 'total_epoch' in kwargs and 'epoch' in kwargs and kwargs[ | |
| 'epoch'] != 'None': | |
| self.shrink_ratio = self.shrink_ratio + 0.2 * kwargs[ | |
| 'epoch'] / float(kwargs['total_epoch']) | |
| def __call__(self, data): | |
| image = data['image'] | |
| text_polys = data['polys'] | |
| ignore_tags = data['ignore_tags'] | |
| h, w = image.shape[:2] | |
| text_polys, ignore_tags = self.validate_polygons( | |
| text_polys, ignore_tags, h, w) | |
| gt = np.zeros((h, w), dtype=np.float32) | |
| mask = np.ones((h, w), dtype=np.float32) | |
| for i in range(len(text_polys)): | |
| polygon = text_polys[i] | |
| height = max(polygon[:, 1]) - min(polygon[:, 1]) | |
| width = max(polygon[:, 0]) - min(polygon[:, 0]) | |
| if ignore_tags[i] or min(height, width) < self.min_text_size: | |
| cv2.fillPoly(mask, | |
| polygon.astype(np.int32)[np.newaxis, :, :], 0) | |
| ignore_tags[i] = True | |
| else: | |
| polygon_shape = Polygon(polygon) | |
| subject = [tuple(l) for l in polygon] | |
| padding = pyclipper.PyclipperOffset() | |
| padding.AddPath(subject, pyclipper.JT_ROUND, | |
| pyclipper.ET_CLOSEDPOLYGON) | |
| shrunk = [] | |
| # Increase the shrink ratio every time we get multiple polygon returned back | |
| possible_ratios = np.arange(self.shrink_ratio, 1, | |
| self.shrink_ratio) | |
| np.append(possible_ratios, 1) | |
| # print(possible_ratios) | |
| for ratio in possible_ratios: | |
| # print(f"Change shrink ratio to {ratio}") | |
| distance = (polygon_shape.area * (1 - np.power(ratio, 2)) / | |
| polygon_shape.length) | |
| shrunk = padding.Execute(-distance) | |
| if len(shrunk) == 1: | |
| break | |
| if shrunk == []: | |
| cv2.fillPoly(mask, | |
| polygon.astype(np.int32)[np.newaxis, :, :], 0) | |
| ignore_tags[i] = True | |
| continue | |
| for each_shrink in shrunk: | |
| shrink = np.array(each_shrink).reshape(-1, 2) | |
| cv2.fillPoly(gt, [shrink.astype(np.int32)], 1) | |
| data['shrink_map'] = gt | |
| data['shrink_mask'] = mask | |
| return data | |
| def validate_polygons(self, polygons, ignore_tags, h, w): | |
| """ | |
| polygons (numpy.array, required): of shape (num_instances, num_points, 2) | |
| """ | |
| if len(polygons) == 0: | |
| return polygons, ignore_tags | |
| assert len(polygons) == len(ignore_tags) | |
| for polygon in polygons: | |
| polygon[:, 0] = np.clip(polygon[:, 0], 0, w - 1) | |
| polygon[:, 1] = np.clip(polygon[:, 1], 0, h - 1) | |
| for i in range(len(polygons)): | |
| area = self.polygon_area(polygons[i]) | |
| if abs(area) < 1: | |
| ignore_tags[i] = True | |
| if area > 0: | |
| polygons[i] = polygons[i][::-1, :] | |
| return polygons, ignore_tags | |
| def polygon_area(self, polygon): | |
| """ | |
| compute polygon area | |
| """ | |
| area = 0 | |
| q = polygon[-1] | |
| for p in polygon: | |
| area += p[0] * q[1] - p[1] * q[0] | |
| q = p | |
| return area / 2.0 | |