File size: 17,704 Bytes
5de2f8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import os
from pathlib import Path
import sys
import time

__dir__ = os.path.dirname(os.path.abspath(__file__))

sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))

import numpy as np
from tools.engine.config import Config
from tools.utility import ArgsParser
from tools.utils.logging import get_logger
from tools.utils.utility import get_image_file_list

logger = get_logger()

root_dir = Path(__file__).resolve().parent
DEFAULT_CFG_PATH_REC_SERVER = str(root_dir /
                                  '../configs/rec/svtrv2/svtrv2_ch.yml')
DEFAULT_CFG_PATH_REC = str(root_dir / '../configs/rec/svtrv2/repsvtr_ch.yml')
DEFAULT_DICT_PATH_REC = str(root_dir / './utils/ppocr_keys_v1.txt')

MODEL_NAME_REC = './openocr_repsvtr_ch.pth'  # 模型文件名称
DOWNLOAD_URL_REC = 'https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_repsvtr_ch.pth'  # 模型文件 URL
MODEL_NAME_REC_SERVER = './openocr_svtrv2_ch.pth'  # 模型文件名称
DOWNLOAD_URL_REC_SERVER = 'https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_svtrv2_ch.pth'  # 模型文件 URL
MODEL_NAME_REC_ONNX = './openocr_rec_model.onnx'  # 模型文件名称
DOWNLOAD_URL_REC_ONNX = 'https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_rec_model.onnx'  # 模型文件 URL


def check_and_download_model(model_name: str, url: str):
    """
    检查预训练模型是否存在,若不存在则从指定 URL 下载到固定缓存目录。

    Args:
        model_name (str): 模型文件的名称,例如 "model.pt"
        url (str): 模型文件的下载地址

    Returns:
        str: 模型文件的完整路径
    """
    if os.path.exists(model_name):
        return model_name

    # 固定缓存路径为用户主目录下的 ".cache/openocr"
    cache_dir = Path.home() / '.cache' / 'openocr'
    model_path = cache_dir / model_name

    # 如果模型文件已存在,直接返回路径
    if model_path.exists():
        logger.info(f'Model already exists at: {model_path}')
        return str(model_path)

    # 如果文件不存在,下载模型
    logger.info(f'Model not found. Downloading from {url}...')

    # 创建缓存目录(如果不存在)
    cache_dir.mkdir(parents=True, exist_ok=True)

    try:
        # 下载文件
        import urllib.request
        with urllib.request.urlopen(url) as response, open(model_path,
                                                           'wb') as out_file:
            out_file.write(response.read())
        logger.info(f'Model downloaded and saved at: {model_path}')
        return str(model_path)

    except Exception as e:
        logger.error(f'Error downloading the model: {e}')
        # 提示用户手动下载
        logger.error(
            f'Unable to download the model automatically. '
            f'Please download the model manually from the following URL:\n{url}\n'
            f'and save it to: {model_name} or {model_path}')
        raise RuntimeError(
            f'Failed to download the model. Please download it manually from {url} '
            f'and save it to {model_path}') from e


class RatioRecTVReisze(object):

    def __init__(self, cfg):
        self.max_ratio = cfg['Eval']['loader'].get('max_ratio', 12)
        self.base_shape = cfg['Eval']['dataset'].get(
            'base_shape', [[64, 64], [96, 48], [112, 40], [128, 32]])
        self.base_h = cfg['Eval']['dataset'].get('base_h', 32)

        from torchvision import transforms as T
        from torchvision.transforms import functional as F
        self.F = F
        self.interpolation = T.InterpolationMode.BICUBIC
        transforms = []
        transforms.extend([
            T.ToTensor(),
            T.Normalize(0.5, 0.5),
        ])
        self.transforms = T.Compose(transforms)
        self.ceil = cfg['Eval']['dataset'].get('ceil', False),

    def __call__(self, data):
        img = data['image']
        imgH = self.base_h
        w, h = img.size
        if self.ceil:
            gen_ratio = int(float(w) / float(h)) + 1
        else:
            gen_ratio = max(1, round(float(w) / float(h)))
        ratio_resize = min(gen_ratio, self.max_ratio)
        imgW, imgH = self.base_shape[ratio_resize -
                                     1] if ratio_resize <= 4 else [
                                         self.base_h *
                                         ratio_resize, self.base_h
                                     ]
        resized_w = imgW
        resized_image = self.F.resize(img, (imgH, resized_w),
                                      interpolation=self.interpolation)
        img = self.transforms(resized_image)
        data['image'] = img
        return data


def build_rec_process(cfg):
    transforms = []
    ratio_resize_flag = True
    for op in cfg['Eval']['dataset']['transforms']:
        op_name = list(op)[0]
        if 'Resize' in op_name:
            ratio_resize_flag = False
        if 'Label' in op_name:
            continue
        elif op_name in ['RecResizeImg']:
            op[op_name]['infer_mode'] = True
        elif op_name == 'KeepKeys':
            if cfg['Architecture']['algorithm'] in ['SAR', 'RobustScanner']:
                if 'valid_ratio' in op[op_name]['keep_keys']:
                    op[op_name]['keep_keys'] = ['image', 'valid_ratio']
                else:
                    op[op_name]['keep_keys'] = ['image']
            else:
                op[op_name]['keep_keys'] = ['image']
        transforms.append(op)
    return transforms, ratio_resize_flag


def set_device(device, numId=0):
    import torch
    if device == 'gpu' and torch.cuda.is_available():
        device = torch.device(f'cuda:{numId}')
    else:
        logger.info('GPU is not available, using CPU.')
        device = torch.device('cpu')
    return device


class OpenRecognizer:

    def __init__(self,
                 config=None,
                 mode='mobile',
                 backend='torch',
                 onnx_model_path=None,
                 numId=0):
        """
        Args:
            config (dict, optional): 配置信息。默认为None。
            mode (str, optional): 模式,'server' 或 'mobile'。默认为'mobile'。
            backend (str): 'torch' 或 'onnx'
            onnx_model_path (str): ONNX模型路径(仅当backend='onnx'时需要)
            numId (int, optional): 设备编号。默认为0。
        """

        if config is None:
            config_file = DEFAULT_CFG_PATH_REC_SERVER if mode == 'server' else DEFAULT_CFG_PATH_REC
            config = Config(config_file).cfg
        self.cfg = config
        # 公共初始化
        self._init_common()
        backend = backend if config['Global'].get(
            'backend', None) is None else config['Global']['backend']
        self.backend = backend
        if backend == 'torch':
            import torch
            self.torch = torch
            self._init_torch_model(numId)
        elif backend == 'onnx':
            from tools.infer.onnx_engine import ONNXEngine
            onnx_model_path = onnx_model_path if config['Global'].get(
                'onnx_model_path',
                None) is None else config['Global']['onnx_model_path']
            if not onnx_model_path:
                if self.cfg['Architecture']['algorithm'] == 'SVTRv2_mobile':
                    onnx_model_path = check_and_download_model(
                        MODEL_NAME_REC_ONNX, DOWNLOAD_URL_REC_ONNX)
                else:
                    raise ValueError('ONNX模式需要指定onnx_model_path参数')
            self.onnx_rec_engine = ONNXEngine(
                onnx_model_path, use_gpu=config['Global']['device'] == 'gpu')
        else:
            raise ValueError("backend参数必须是'torch'或'onnx'")

    def _init_common(self):
        # 初始化公共组件
        from openrec.postprocess import build_post_process
        from openrec.preprocess import create_operators, transform
        self.transform = transform
        # 构建预处理流程
        algorithm_name = self.cfg['Architecture']['algorithm']
        if algorithm_name in ['SVTRv2_mobile', 'SVTRv2_server']:
            self.cfg['Global']['character_dict_path'] = DEFAULT_DICT_PATH_REC
        self.post_process_class = build_post_process(self.cfg['PostProcess'],
                                                     self.cfg['Global'])
        char_num = self.post_process_class.get_character_num()
        self.cfg['Architecture']['Decoder']['out_channels'] = char_num
        transforms, ratio_resize_flag = build_rec_process(self.cfg)
        self.ops = create_operators(transforms, self.cfg['Global'])
        if ratio_resize_flag:
            ratio_resize = RatioRecTVReisze(cfg=self.cfg)
            self.ops.insert(-1, ratio_resize)

    def _init_torch_model(self, numId):
        from tools.utils.ckpt import load_ckpt

        if self.cfg['Global'].get('use_transformers', False):
            algorithm_name = 'unirec'  # 使用transformers模型
            from openrec.modeling.transformers_modeling.modeling_unirec import UniRecForConditionalGenerationNew
            from openrec.modeling.transformers_modeling.configuration_unirec import UniRecConfig
            cfg_model = UniRecConfig.from_pretrained(self.cfg['Global']['vlm_ocr_config'])
            # cfg_model._attn_implementation = "flash_attention_2"
            cfg_model._attn_implementation = 'eager'
            self.model = UniRecForConditionalGenerationNew(config=cfg_model)

        else:
            # PyTorch专用初始化
            algorithm_name = self.cfg['Architecture']['algorithm']
            if algorithm_name in ['SVTRv2_mobile', 'SVTRv2_server']:
                if not os.path.exists(self.cfg['Global']['pretrained_model']):
                    pretrained_model = check_and_download_model(
                        MODEL_NAME_REC, DOWNLOAD_URL_REC
                    ) if algorithm_name == 'SVTRv2_mobile' else check_and_download_model(
                        MODEL_NAME_REC_SERVER, DOWNLOAD_URL_REC_SERVER)
                    self.cfg['Global']['pretrained_model'] = pretrained_model

            from openrec.modeling import build_model as build_rec_model
            self.model = build_rec_model(self.cfg['Architecture'])

        load_ckpt(self.model, self.cfg)

        self.device = set_device(self.cfg['Global']['device'], numId)
        self.model.to(self.device)
        self.model.eval()
        if algorithm_name == 'SVTRv2_mobile':
            from tools.infer_det import replace_batchnorm
            replace_batchnorm(self.model.encoder)

    def _inference_onnx(self, images):
        # ONNX输入需要为numpy数组
        return self.onnx_rec_engine.run(images)

    def __call__(self,
                 img_path=None,
                 img_numpy_list=None,
                 img_numpy=None,
                 batch_num=1):
        """
        调用函数,处理输入图像,并返回识别结果。

        Args:
            img_path (str, optional): 图像文件的路径。默认为 None。
            img_numpy_list (list, optional): 包含多个图像 numpy 数组的列表。默认为 None。
            img_numpy (numpy.ndarray, optional): 单个图像的 numpy 数组。默认为 None。
            batch_num (int, optional): 每次处理的图像数量。默认为 1。

        Returns:
            list: 包含识别结果的列表,每个元素为一个字典,包含文件路径(如果有的话)、文本、分数和延迟时间。

        Raises:
            Exception: 如果没有提供图像路径或 numpy 数组,则引发异常。
        """

        if img_numpy is not None:
            img_numpy_list = [img_numpy]
            num_img = 1
        elif img_path is not None:
            img_path = get_image_file_list(img_path)
            num_img = len(img_path)
        elif img_numpy_list is not None:
            num_img = len(img_numpy_list)
        else:
            raise Exception('No input image path or numpy array.')
        results = []
        for start_idx in range(0, num_img, batch_num):
            batch_data = []
            batch_others = []
            batch_file_names = []

            max_width, max_height = 0, 0
            # Prepare batch data
            for img_idx in range(start_idx, min(start_idx + batch_num,
                                                num_img)):
                if img_numpy_list is not None:
                    img = img_numpy_list[img_idx]
                    data = {'image': img}
                elif img_path is not None:
                    file_name = img_path[img_idx]
                    with open(file_name, 'rb') as f:
                        img = f.read()
                        data = {'image': img}
                    data = self.transform(data, self.ops[:1])
                    batch_file_names.append(file_name)
                batch = self.transform(data, self.ops[1:])
                others = None
                if self.cfg['Architecture']['algorithm'] in [
                        'SAR', 'RobustScanner'
                ]:
                    valid_ratio = np.expand_dims(batch[-1], axis=0)
                    batch_others.append(valid_ratio)

                resized_image = batch[0] if isinstance(
                    batch[0], np.ndarray) else batch[0].numpy()
                h, w = resized_image.shape[-2:]
                max_width = max(max_width, w)
                max_height = max(max_height, h)
                batch_data.append(batch[0])

            padded_batch = np.zeros(
                (len(batch_data), 3, max_height, max_width), dtype=np.float32)
            for i, img in enumerate(batch_data):
                h, w = img.shape[-2:]
                padded_batch[i, :, :h, :w] = img

            if batch_others:
                others = np.concatenate(batch_others, axis=0)
            else:
                others = None
            t_start = time.time()
            if self.backend == 'torch':
                images = self.torch.from_numpy(padded_batch).to(
                    device=self.device)
                with self.torch.no_grad():
                    if self.cfg['Global'].get('use_transformers', False):
                        # transformers模型推理
                        inputs = {
                            'pixel_values': images,
                            'input_ids': None,
                            'attention_mask': None
                        }
                        preds = self.model.generate(**inputs)
                    else:
                        # PyTorch模型推理
                        preds = self.model(images,
                                           others)  # bs, len, num_classes
                torch_tensor = True
            elif self.backend == 'onnx':
                # ONNX推理
                preds = self._inference_onnx(padded_batch)
                preds = preds[0]  # bs, len, num_classes
                torch_tensor = False
            t_cost = time.time() - t_start
            post_results = self.post_process_class(preds,
                                                   torch_tensor=torch_tensor)
            for i, post_result in enumerate(post_results):
                if img_path is not None:
                    info = {
                        'file': batch_file_names[i],
                        'text': post_result[0],
                        'score': post_result[1],
                        'elapse': t_cost
                    }
                else:
                    info = {
                        'text': post_result[0],
                        'score': post_result[1],
                        'elapse': t_cost
                    }
                results.append(info)

        return results


def main(cfg):
    model = OpenRecognizer(cfg)

    save_res_path = './rec_results/'
    if not os.path.exists(save_res_path):
        os.makedirs(save_res_path)

    t_sum = 0
    sample_num = 0
    max_len = cfg['Global']['max_text_length']
    text_len_time = [0 for _ in range(max_len)]
    text_len_num = [0 for _ in range(max_len)]

    sample_num = 0
    with open(save_res_path + '/rec_results.txt', 'wb') as fout:
        for file in get_image_file_list(cfg['Global']['infer_img']):
            preds_result = model(img_path=file, batch_num=1)[0]
            rec_text = preds_result['text']
            score = preds_result['score']
            t_cost = preds_result['elapse']
            info = rec_text + '\t' + str(score)
            text_len_num[min(max_len - 1, len(rec_text))] += 1
            text_len_time[min(max_len - 1, len(rec_text))] += t_cost
            logger.info(
                f'{sample_num} {file}\t result: {info}, time cost: {t_cost}')
            otstr = file + '\t' + info + '\n'
            t_sum += t_cost
            fout.write(otstr.encode())
            sample_num += 1
        logger.info(
            f"Results saved to {os.path.join(save_res_path, 'rec_results.txt')}.)"
        )

    print(text_len_num)
    w_avg_t_cost = []
    for l_t_cost, l_num in zip(text_len_time, text_len_num):
        if l_num != 0:
            w_avg_t_cost.append(l_t_cost / l_num)
    print(w_avg_t_cost)
    w_avg_t_cost = sum(w_avg_t_cost) / len(w_avg_t_cost)

    logger.info(
        f'Sample num: {sample_num}, Weighted Avg time cost: {t_sum/sample_num}, Avg time cost: {w_avg_t_cost}'
    )
    logger.info('success!')


if __name__ == '__main__':
    FLAGS = ArgsParser().parse_args()
    cfg = Config(FLAGS.config)
    FLAGS = vars(FLAGS)
    opt = FLAGS.pop('opt')
    cfg.merge_dict(FLAGS)
    cfg.merge_dict(opt)
    main(cfg.cfg)