Spaces:
Running
Running
File size: 12,290 Bytes
5de2f8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from pathlib import Path
import time
import numpy as np
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
os.environ['FLAGS_allocator_strategy'] = 'auto_growth'
import cv2
import json
from tools.engine.config import Config
from tools.utility import ArgsParser
from tools.utils.logging import get_logger
from tools.utils.utility import get_image_file_list
logger = get_logger()
root_dir = Path(__file__).resolve().parent
DEFAULT_CFG_PATH_DET = str(root_dir / '../configs/det/dbnet/repvit_db.yml')
MODEL_NAME_DET = './openocr_det_repvit_ch.pth' # 模型文件名称
DOWNLOAD_URL_DET = 'https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_det_repvit_ch.pth' # 模型文件 URL
MODEL_NAME_DET_ONNX = './openocr_det_model.onnx' # 模型文件名称
DOWNLOAD_URL_DET_ONNX = 'https://github.com/Topdu/OpenOCR/releases/download/develop0.0.1/openocr_det_model.onnx' # 模型文件 URL
def check_and_download_model(model_name: str, url: str):
"""
检查预训练模型是否存在,若不存在则从指定 URL 下载到固定缓存目录。
Args:
model_name (str): 模型文件的名称,例如 "model.pt"
url (str): 模型文件的下载地址
Returns:
str: 模型文件的完整路径
"""
if os.path.exists(model_name):
return model_name
# 固定缓存路径为用户主目录下的 ".cache/openocr"
cache_dir = Path.home() / '.cache' / 'openocr'
model_path = cache_dir / model_name
# 如果模型文件已存在,直接返回路径
if model_path.exists():
logger.info(f'Model already exists at: {model_path}')
return str(model_path)
# 如果文件不存在,下载模型
logger.info(f'Model not found. Downloading from {url}...')
# 创建缓存目录(如果不存在)
cache_dir.mkdir(parents=True, exist_ok=True)
try:
# 下载文件
import urllib.request
with urllib.request.urlopen(url) as response, open(model_path,
'wb') as out_file:
out_file.write(response.read())
logger.info(f'Model downloaded and saved at: {model_path}')
return str(model_path)
except Exception as e:
logger.error(f'Error downloading the model: {e}')
# 提示用户手动下载
logger.error(
f'Unable to download the model automatically. '
f'Please download the model manually from the following URL:\n{url}\n'
f'and save it to: {model_name} or {model_path}')
raise RuntimeError(
f'Failed to download the model. Please download it manually from {url} '
f'and save it to {model_path}') from e
def replace_batchnorm(net):
import torch
for child_name, child in net.named_children():
if hasattr(child, 'fuse'):
fused = child.fuse()
setattr(net, child_name, fused)
replace_batchnorm(fused)
elif isinstance(child, torch.nn.BatchNorm2d):
setattr(net, child_name, torch.nn.Identity())
else:
replace_batchnorm(child)
def draw_det_res(dt_boxes, img, img_name, save_path):
src_im = img
for box in dt_boxes:
box = np.array(box).astype(np.int32).reshape((-1, 1, 2))
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
if not os.path.exists(save_path):
os.makedirs(save_path)
save_path = os.path.join(save_path, os.path.basename(img_name))
cv2.imwrite(save_path, src_im)
def set_device(device, numId=0):
import torch
if device == 'gpu' and torch.cuda.is_available():
device = torch.device(f'cuda:{numId}')
else:
logger.info('GPU is not available, using CPU.')
device = torch.device('cpu')
return device
class OpenDetector(object):
def __init__(self,
config=None,
backend='torch',
onnx_model_path=None,
numId=0):
"""
Args:
config (dict, optional): 配置信息。默认为None。
backend (str): 'torch' 或 'onnx'
onnx_model_path (str): ONNX模型路径(仅当backend='onnx'时需要)
numId (int, optional): 设备编号。默认为0。
"""
if config is None:
config = Config(DEFAULT_CFG_PATH_DET).cfg
self._init_common(config)
backend = backend if config['Global'].get(
'backend', None) is None else config['Global']['backend']
self.backend = backend
if backend == 'torch':
import torch
self.torch = torch
if config['Architecture']['algorithm'] == 'DB_mobile':
if not os.path.exists(config['Global']['pretrained_model']):
config['Global'][
'pretrained_model'] = check_and_download_model(
MODEL_NAME_DET, DOWNLOAD_URL_DET)
self._init_torch_model(config, numId)
elif backend == 'onnx':
from tools.infer.onnx_engine import ONNXEngine
onnx_model_path = onnx_model_path if config['Global'].get(
'onnx_model_path',
None) is None else config['Global']['onnx_model_path']
if onnx_model_path is None:
if config['Architecture']['algorithm'] == 'DB_mobile':
onnx_model_path = check_and_download_model(
MODEL_NAME_DET_ONNX, DOWNLOAD_URL_DET_ONNX)
else:
raise ValueError('ONNX模式需要指定onnx_model_path参数')
self.onnx_det_engine = ONNXEngine(
onnx_model_path, use_gpu=config['Global']['device'] == 'gpu')
else:
raise ValueError("backend参数必须是'torch'或'onnx'")
def _init_common(self, config):
from opendet.postprocess import build_post_process
from opendet.preprocess import create_operators, transform
global_config = config['Global']
# create data ops
self.transform = transform
transforms = []
for op in config['Eval']['dataset']['transforms']:
op_name = list(op)[0]
if 'Label' in op_name:
continue
elif op_name == 'KeepKeys':
op[op_name]['keep_keys'] = ['image', 'shape']
transforms.append(op)
self.ops = create_operators(transforms, global_config)
# build post process
self.post_process_class = build_post_process(config['PostProcess'],
global_config)
def _init_torch_model(self, config, numId=0):
from opendet.modeling import build_model as build_det_model
from tools.utils.ckpt import load_ckpt
# build model
self.model = build_det_model(config['Architecture'])
self.model.eval()
load_ckpt(self.model, config)
if config['Architecture']['algorithm'] == 'DB_mobile':
replace_batchnorm(self.model.backbone)
self.device = set_device(config['Global']['device'], numId=numId)
self.model.to(device=self.device)
def _inference_onnx(self, images):
# ONNX输入需要为numpy数组
return self.onnx_det_engine.run(images)
def __call__(self,
img_path=None,
img_numpy_list=None,
img_numpy=None,
return_mask=False,
**kwargs):
"""
对输入图像进行处理,并返回处理结果。
Args:
img_path (str, optional): 图像文件路径。默认为 None。
img_numpy_list (list, optional): 图像数据列表,每个元素为 numpy 数组。默认为 None。
img_numpy (numpy.ndarray, optional): 图像数据,numpy 数组格式。默认为 None。
Returns:
list: 包含处理结果的列表。每个元素为一个字典,包含 'boxes' 和 'elapse' 两个键。
'boxes' 的值为检测到的目标框点集,'elapse' 的值为处理时间。
Raises:
Exception: 若没有提供图像路径或 numpy 数组,则抛出异常。
"""
if img_numpy is not None:
img_numpy_list = [img_numpy]
num_img = 1
elif img_path is not None:
img_path = get_image_file_list(img_path)
num_img = len(img_path)
elif img_numpy_list is not None:
num_img = len(img_numpy_list)
else:
raise Exception('No input image path or numpy array.')
results = []
for img_idx in range(num_img):
if img_numpy_list is not None:
img = img_numpy_list[img_idx]
data = {'image': img}
elif img_path is not None:
with open(img_path[img_idx], 'rb') as f:
img = f.read()
data = {'image': img}
data = self.transform(data, self.ops[:1])
if kwargs.get('det_input_size', None) is not None:
data['max_sile_len'] = kwargs['det_input_size']
batch = self.transform(data, self.ops[1:])
images = np.expand_dims(batch[0], axis=0)
shape_list = np.expand_dims(batch[1], axis=0)
t_start = time.time()
if self.backend == 'torch':
images = self.torch.from_numpy(images).to(device=self.device)
with self.torch.no_grad():
preds = self.model(images)
kwargs['torch_tensor'] = True
elif self.backend == 'onnx':
preds_det = self._inference_onnx(images)
preds = {'maps': preds_det[0]}
kwargs['torch_tensor'] = False
t_cost = time.time() - t_start
post_result = self.post_process_class(preds, [None, shape_list],
**kwargs)
info = {'boxes': post_result[0]['points'], 'elapse': t_cost}
if return_mask:
if isinstance(preds['maps'], self.torch.Tensor):
mask = preds['maps'].detach().cpu().numpy()
else:
mask = preds['maps']
info['mask'] = mask
results.append(info)
return results
def main(cfg):
is_visualize = cfg['Global'].get('is_visualize', False)
model = OpenDetector(cfg)
save_res_path = './det_results/'
if not os.path.exists(save_res_path):
os.makedirs(save_res_path)
sample_num = 0
with open(save_res_path + '/det_results.txt', 'wb') as fout:
for file in get_image_file_list(cfg['Global']['infer_img']):
preds_result = model(img_path=file)[0]
logger.info('{} infer_img: {}, time cost: {}'.format(
sample_num, file, preds_result['elapse']))
boxes = preds_result['boxes']
dt_boxes_json = []
for box in boxes:
tmp_json = {}
tmp_json['points'] = np.array(box).tolist()
dt_boxes_json.append(tmp_json)
if is_visualize:
src_img = cv2.imread(file)
draw_det_res(boxes, src_img, file, save_res_path)
logger.info('The detected Image saved in {}'.format(
os.path.join(save_res_path, os.path.basename(file))))
otstr = file + '\t' + json.dumps(dt_boxes_json) + '\n'
logger.info('results: {}'.format(json.dumps(dt_boxes_json)))
fout.write(otstr.encode())
sample_num += 1
logger.info(
f"Results saved to {os.path.join(save_res_path, 'det_results.txt')}.)"
)
logger.info('success!')
if __name__ == '__main__':
FLAGS = ArgsParser().parse_args()
cfg = Config(FLAGS.config)
FLAGS = vars(FLAGS)
opt = FLAGS.pop('opt')
cfg.merge_dict(FLAGS)
cfg.merge_dict(opt)
main(cfg.cfg)
|