File size: 4,724 Bytes
5de2f8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import csv
import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))

sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))

import numpy as np

from tools.data import build_dataloader
from tools.engine.config import Config
from tools.engine.trainer import Trainer
from tools.utility import ArgsParser


def parse_args():
    parser = ArgsParser()
    args = parser.parse_args()
    return args


def main():
    FLAGS = parse_args()
    cfg = Config(FLAGS.config)
    FLAGS = vars(FLAGS)
    opt = FLAGS.pop('opt')
    cfg.merge_dict(FLAGS)
    cfg.merge_dict(opt)

    cfg.cfg['Global']['use_amp'] = False
    if cfg.cfg['Global']['output_dir'][-1] == '/':
        cfg.cfg['Global']['output_dir'] = cfg.cfg['Global']['output_dir'][:-1]
    cfg.cfg['Global']['max_text_length'] = 200
    cfg.cfg['Architecture']['Decoder']['max_len'] = 200
    cfg.cfg['Metric']['name'] = 'RecMetricLong'
    if cfg.cfg['Global']['pretrained_model'] is None:
        cfg.cfg['Global'][
            'pretrained_model'] = cfg.cfg['Global']['output_dir'] + '/best.pth'
    trainer = Trainer(cfg, mode='eval')

    best_model_dict = trainer.status.get('metrics', {})
    trainer.logger.info('metric in ckpt ***************')
    for k, v in best_model_dict.items():
        trainer.logger.info('{}:{}'.format(k, v))

    data_dirs_list = [
        [
            '../ltb/ultra_long_26_35_list.txt',
            '../ltb/ultra_long_36_55_list.txt',
            '../ltb/ultra_long_56_list.txt',
        ],
    ]

    cfg = cfg.cfg
    cfg['Eval']['dataset']['name'] = 'SimpleDataSet'
    file_csv = open(
        cfg['Global']['output_dir'] + '/' +
        cfg['Global']['output_dir'].split('/')[-1] +
        '_result1_1_test_all_long_simple_bi_bs1.csv', 'w')
    csv_w = csv.writer(file_csv)

    for data_dirs in data_dirs_list:
        acc_each = []
        acc_each_num = []
        acc_each_dis = []
        each_long = {}
        for datadir in data_dirs:
            config_each = cfg.copy()
            config_each['Eval']['dataset']['label_file_list'] = [datadir]
            valid_dataloader = build_dataloader(config_each, 'Eval',
                                                trainer.logger)
            trainer.logger.info(
                f'{datadir} valid dataloader has {len(valid_dataloader)} iters'
            )
            trainer.valid_dataloader = valid_dataloader
            metric = trainer.eval()
            acc_each.append(metric['acc'] * 100)
            acc_each_dis.append(metric['norm_edit_dis'])
            acc_each_num.append(metric['all_num'])
            trainer.logger.info('metric eval ***************')
            for k, v in metric.items():
                trainer.logger.info('{}:{}'.format(k, v))
                if 'each' in k:
                    csv_w.writerow([k] + v[26:])
                    each_long[k] = each_long.get(k, []) + [np.array(v[26:])]
        avg1 = np.array(acc_each) * np.array(acc_each_num) / sum(acc_each_num)
        csv_w.writerow(acc_each + [avg1.sum().tolist()] +
                       [sum(acc_each) / len(acc_each)])
        print(acc_each + [avg1.sum().tolist()] +
              [sum(acc_each) / len(acc_each)])
        avg1 = np.array(acc_each_dis) * np.array(acc_each_num) / sum(
            acc_each_num)
        csv_w.writerow(acc_each_dis + [avg1.sum().tolist()] +
                       [sum(acc_each_dis) / len(acc_each)])

        sum_all = np.array(each_long['each_len_num']).sum(0)
        for k, v in each_long.items():
            if k != 'each_len_num':
                v_sum_weight = (np.array(v) *
                                np.array(each_long['each_len_num'])).sum(0)
                sum_all_pad = np.where(sum_all == 0, 1., sum_all)
                v_all = v_sum_weight / sum_all_pad
                v_all = np.where(sum_all == 0, 0., v_all)
                csv_w.writerow([k] + v_all.tolist())
                v_26_40 = (v_all[:10] * sum_all[:10]) / sum_all[:10].sum()
                csv_w.writerow([k + '26_35'] + [v_26_40.sum().tolist()] +
                               [sum_all[:10].sum().tolist()])
                v_41_55 = (v_all[10:30] *
                           sum_all[10:30]) / sum_all[10:30].sum()
                csv_w.writerow([k + '36_55'] + [v_41_55.sum().tolist()] +
                               [sum_all[10:30].sum().tolist()])
                v_56_70 = (v_all[30:] * sum_all[30:]) / sum_all[30:].sum()
                csv_w.writerow([k + '56'] + [v_56_70.sum().tolist()] +
                               [sum_all[30:].sum().tolist()])
            else:
                csv_w.writerow([k] + sum_all.tolist())
    file_csv.close()


if __name__ == '__main__':
    main()