File size: 10,069 Bytes
5de2f8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import cv2
import numpy as np


def padding_image(img, size=(640, 640)):
    """
    Padding an image using OpenCV:
    - If the image is smaller than the target size, pad it to 640x640.
    - If the image is larger than the target size, split it into multiple 640x640 images and record positions.

    :param image_path: Path to the input image.
    :param output_dir: Directory to save the output images.
    :param size: The target size for padding or splitting (default 640x640).
    :return: List of tuples containing the coordinates of the top-left corner of each cropped 640x640 image.
    """

    img_height, img_width = img.shape[:2]
    target_width, target_height = size

    # If image is smaller than target size, pad the image to 640x640

    # Calculate padding amounts (top, bottom, left, right)
    pad_top = 0
    pad_bottom = target_height - img_height
    pad_left = 0
    pad_right = target_width - img_width

    # Pad the image (white padding, border type: constant)
    padded_img = cv2.copyMakeBorder(img,
                                    pad_top,
                                    pad_bottom,
                                    pad_left,
                                    pad_right,
                                    cv2.BORDER_CONSTANT,
                                    value=[0, 0, 0])

    # Return the padded area positions (top-left and bottom-right coordinates of the original image)
    return padded_img


def is_poly_outside_rect(poly, x, y, w, h):
    poly = np.array(poly)
    if poly[:, 0].max() < x or poly[:, 0].min() > x + w:
        return True
    if poly[:, 1].max() < y or poly[:, 1].min() > y + h:
        return True
    return False


def split_regions(axis):
    regions = []
    min_axis = 0
    for i in range(1, axis.shape[0]):
        if axis[i] != axis[i - 1] + 1:
            region = axis[min_axis:i]
            min_axis = i
            regions.append(region)
    return regions


def random_select(axis, max_size):
    xx = np.random.choice(axis, size=2)
    xmin = np.min(xx)
    xmax = np.max(xx)
    xmin = np.clip(xmin, 0, max_size - 1)
    xmax = np.clip(xmax, 0, max_size - 1)
    return xmin, xmax


def region_wise_random_select(regions, max_size):
    selected_index = list(np.random.choice(len(regions), 2))
    selected_values = []
    for index in selected_index:
        axis = regions[index]
        xx = int(np.random.choice(axis, size=1))
        selected_values.append(xx)
    xmin = min(selected_values)
    xmax = max(selected_values)
    return xmin, xmax


def crop_area(im, text_polys, min_crop_side_ratio, max_tries):
    h, w, _ = im.shape
    h_array = np.zeros(h, dtype=np.int32)
    w_array = np.zeros(w, dtype=np.int32)
    for points in text_polys:
        points = np.round(points, decimals=0).astype(np.int32)
        minx = np.min(points[:, 0])
        maxx = np.max(points[:, 0])
        w_array[minx:maxx] = 1
        miny = np.min(points[:, 1])
        maxy = np.max(points[:, 1])
        h_array[miny:maxy] = 1
    # ensure the cropped area not across a text
    h_axis = np.where(h_array == 0)[0]
    w_axis = np.where(w_array == 0)[0]

    if len(h_axis) == 0 or len(w_axis) == 0:
        return 0, 0, w, h

    h_regions = split_regions(h_axis)
    w_regions = split_regions(w_axis)

    for i in range(max_tries):
        if len(w_regions) > 1:
            xmin, xmax = region_wise_random_select(w_regions, w)
        else:
            xmin, xmax = random_select(w_axis, w)
        if len(h_regions) > 1:
            ymin, ymax = region_wise_random_select(h_regions, h)
        else:
            ymin, ymax = random_select(h_axis, h)

        if (xmax - xmin < min_crop_side_ratio * w or ymax - ymin < min_crop_side_ratio * h):
            # area too small
            continue
        num_poly_in_rect = 0
        for poly in text_polys:
            if not is_poly_outside_rect(poly, xmin, ymin, xmax - xmin,
                                        ymax - ymin):
                num_poly_in_rect += 1
                break

        if num_poly_in_rect > 0:
            return xmin, ymin, xmax - xmin, ymax - ymin

    return 0, 0, w, h


class EastRandomCropData(object):

    def __init__(
        self,
        size=(640, 640),
        max_tries=10,
        min_crop_side_ratio=0.1,
        keep_ratio=True,
        **kwargs,
    ):
        self.size = size
        self.max_tries = max_tries
        self.min_crop_side_ratio = min_crop_side_ratio
        self.keep_ratio = keep_ratio

    def __call__(self, data):
        img = data['image']
        text_polys = data['polys']
        ignore_tags = data['ignore_tags']
        texts = data['texts']
        all_care_polys = [
            text_polys[i] for i, tag in enumerate(ignore_tags) if not tag
        ]
        # 计算crop区域
        crop_x, crop_y, crop_w, crop_h = crop_area(img, all_care_polys,
                                                   self.min_crop_side_ratio,
                                                   self.max_tries)
        # crop 图片 保持比例填充
        scale_w = self.size[0] / crop_w
        scale_h = self.size[1] / crop_h
        scale = min(scale_w, scale_h)
        h = int(crop_h * scale)
        w = int(crop_w * scale)
        if self.keep_ratio:
            padimg = np.zeros((self.size[1], self.size[0], img.shape[2]),
                              img.dtype)
            padimg[:h, :w] = cv2.resize(
                img[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w], (w, h))
            img = padimg
        else:
            img = cv2.resize(
                img[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w],
                tuple(self.size),
            )
        # crop 文本框
        text_polys_crop = []
        ignore_tags_crop = []
        texts_crop = []
        for poly, text, tag in zip(text_polys, texts, ignore_tags):
            poly = ((poly - (crop_x, crop_y)) * scale).tolist()
            if not is_poly_outside_rect(poly, 0, 0, w, h):
                text_polys_crop.append(poly)
                ignore_tags_crop.append(tag)
                texts_crop.append(text)
        data['image'] = img
        data['polys'] = np.array(text_polys_crop)
        data['ignore_tags'] = ignore_tags_crop
        data['texts'] = texts_crop
        return data


class CropResize(object):

    def __init__(self, size=(640, 640), interpolation=cv2.INTER_LINEAR):
        self.size = size
        self.interpolation = interpolation

    def __call__(self, data):
        """
        Resize an image using OpenCV:
        - If the image is smaller than the target size, pad it to 640x640.
        - If the image is larger than the target size, split it into multiple 640x640 images and record positions.

        :param image_path: Path to the input image.
        :param output_dir: Directory to save the output images.
        :param size: The target size for padding or splitting (default 640x640).
        :return: List of tuples containing the coordinates of the top-left corner of each cropped 640x640 image.
        """
        img = data['image']
        img_height, img_width = img.shape[:2]
        target_width, target_height = self.size

        # If image is smaller than target size, pad the image to 640x640
        if img_width <= target_width and img_height <= target_height:
            # Calculate padding amounts (top, bottom, left, right)
            if img_width == target_width and img_height == target_height:
                return [img], [[0, 0, img_width, img_height]]
            padded_img = padding_image(img, self.size)

            # Return the padded area positions (top-left and bottom-right coordinates of the original image)
            return [padded_img], [[0, 0, img_width, img_height]]

        if img_width < target_width:
            img = cv2.copyMakeBorder(img,
                                     0,
                                     0,
                                     0,
                                     target_width - img_width,
                                     cv2.BORDER_CONSTANT,
                                     value=[0, 0, 0])

        if img_height < target_height:
            img = cv2.copyMakeBorder(img,
                                     0,
                                     target_height - img_height,
                                     0,
                                     0,
                                     cv2.BORDER_CONSTANT,
                                     value=[0, 0, 0])
            # raise ValueError("Image dimensions must be greater than or equal to target size")

        img_height, img_width = img.shape[:2]
        # If image is larger than or equal to target size, crop it into 640x640 tiles
        crop_positions = []
        count = 0
        cropped_img_list = []
        for top in range(0, img_height - target_height // 2,
                         target_height // 2):
            for left in range(0, img_width - target_height // 2,
                              target_width // 2):
                # Calculate the bottom and right boundaries for the crop
                right = min(left + target_width, img_width)
                bottom = min(top + target_height, img_height)
                if right > img_width:
                    right = img_width
                    left = max(0, right - target_width)
                if bottom > img_height:
                    bottom = img_height
                    top = max(0, bottom - target_height)
                # Crop the image
                cropped_img = img[top:bottom, left:right]
                if bottom - top < target_height or right - left < target_width:
                    cropped_img = padding_image(cropped_img, self.size)

                count += 1
                cropped_img_list.append(cropped_img)

                # Record the position of the cropped image
                crop_positions.append([left, top, right, bottom])

        # print(f"Images cropped and saved at {output_dir}.")

        return cropped_img_list, crop_positions