Spaces:
Running
Running
File size: 4,893 Bytes
5de2f8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import copy
import io
import cv2
import numpy as np
from PIL import Image
from importlib import import_module
MODULE_MAPPING = {
'DetResizeForTest': '.db_resize_for_test',
'CopyPaste': '.crop_paste',
'IaaAugment': '.iaa_augment',
'EastRandomCropData': '.crop_resize',
'DetLabelEncode': '.db_label_encode',
'MakeBorderMap': '.db_label_encode',
'MakeShrinkMap': '.db_label_encode',
}
class NormalizeImage(object):
"""normalize image such as substract mean, divide std"""
def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
if isinstance(scale, str):
scale = eval(scale)
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
mean = mean if mean is not None else [0.485, 0.456, 0.406]
std = std if std is not None else [0.229, 0.224, 0.225]
shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
self.mean = np.array(mean).reshape(shape).astype('float32')
self.std = np.array(std).reshape(shape).astype('float32')
def __call__(self, data):
img = data['image']
from PIL import Image
if isinstance(img, Image.Image):
img = np.array(img)
assert isinstance(img,
np.ndarray), "invalid input 'img' in NormalizeImage"
data['image'] = (img.astype('float32') * self.scale -
self.mean) / self.std
return data
class ToCHWImage(object):
"""convert hwc image to chw image"""
def __init__(self, **kwargs):
pass
def __call__(self, data):
img = data['image']
from PIL import Image
if isinstance(img, Image.Image):
img = np.array(img)
data['image'] = img.transpose((2, 0, 1))
return data
class KeepKeys(object):
def __init__(self, keep_keys, **kwargs):
self.keep_keys = keep_keys
def __call__(self, data):
data_list = []
for key in self.keep_keys:
data_list.append(data[key])
return data_list
def transform(data, ops=None):
"""transform."""
if ops is None:
ops = []
for op in ops:
data = op(data)
if data is None:
return None
return data
class DecodeImage(object):
"""decode image."""
def __init__(self,
img_mode='RGB',
channel_first=False,
ignore_orientation=False,
**kwargs):
self.img_mode = img_mode
self.channel_first = channel_first
self.ignore_orientation = ignore_orientation
def __call__(self, data):
img = data['image']
assert type(img) is bytes and len(
img) > 0, "invalid input 'img' in DecodeImage"
img = np.frombuffer(img, dtype='uint8')
if self.ignore_orientation:
img = cv2.imdecode(
img, cv2.IMREAD_IGNORE_ORIENTATION | cv2.IMREAD_COLOR)
else:
img = cv2.imdecode(img, 1)
if img is None:
return None
if self.img_mode == 'GRAY':
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
elif self.img_mode == 'RGB':
assert img.shape[2] == 3, 'invalid shape of image[%s]' % (
img.shape)
img = img[:, :, ::-1]
if self.channel_first:
img = img.transpose((2, 0, 1))
data['image'] = img
return data
class DecodeImagePIL(object):
"""decode image."""
def __init__(self, img_mode='RGB', **kwargs):
self.img_mode = img_mode
def __call__(self, data):
img = data['image']
assert type(img) is bytes and len(
img) > 0, "invalid input 'img' in DecodeImage"
img = data['image']
buf = io.BytesIO(img)
img = Image.open(buf).convert('RGB')
if self.img_mode == 'Gray':
img = img.convert('L')
elif self.img_mode == 'BGR':
img = np.array(img)[:, :, ::-1] # 将图片转为numpy格式,并将最后一维通道倒序
img = Image.fromarray(np.uint8(img))
data['image'] = img
return data
def dynamic_import(class_name):
module_path = MODULE_MAPPING.get(class_name)
if not module_path:
raise ValueError(f'Unsupported class: {class_name}')
module = import_module(module_path, package=__package__)
return getattr(module, class_name)
def create_operators(op_param_list, global_config=None):
ops = []
for op_info in op_param_list:
op_name = list(op_info.keys())[0]
param = copy.deepcopy(op_info[op_name]) or {}
if global_config:
param.update(global_config)
if op_name in globals():
op_class = globals()[op_name]
else:
op_class = dynamic_import(op_name)
ops.append(op_class(**param))
return ops
|