Spaces:
Sleeping
Sleeping
File size: 8,250 Bytes
5de2f8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# @Author: OpenOCR
# @Contact: [email protected]
import os
import gradio as gr # gradio==4.20.0
os.environ['FLAGS_allocator_strategy'] = 'auto_growth'
import cv2
import numpy as np
import json
import time
from PIL import Image
from tools.infer_e2e import OpenOCR, check_and_download_font, draw_ocr_box_txt
def initialize_ocr(model_type, drop_score):
return OpenOCR(mode=model_type, drop_score=drop_score)
# Default model type
model_type = 'mobile'
drop_score = 0.4
text_sys = initialize_ocr(model_type, drop_score)
# warm up 5 times
if True:
img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
for i in range(5):
res = text_sys(img_numpy=img)
font_path = './simfang.ttf'
font_path = check_and_download_font(font_path)
def main(input_image,
model_type_select,
det_input_size_textbox=960,
rec_drop_score=0.4,
mask_thresh=0.3,
box_thresh=0.6,
unclip_ratio=1.5,
det_score_mode='slow'):
global text_sys, model_type
# Update OCR model if the model type changes
if model_type_select != model_type:
model_type = model_type_select
text_sys = initialize_ocr(model_type, rec_drop_score)
img = input_image[:, :, ::-1]
starttime = time.time()
results, time_dict, mask = text_sys(
img_numpy=img,
return_mask=True,
det_input_size=int(det_input_size_textbox),
thresh=mask_thresh,
box_thresh=box_thresh,
unclip_ratio=unclip_ratio,
score_mode=det_score_mode)
elapse = time.time() - starttime
save_pred = json.dumps(results[0], ensure_ascii=False)
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
boxes = [res['points'] for res in results[0]]
txts = [res['transcription'] for res in results[0]]
scores = [res['score'] for res in results[0]]
draw_img = draw_ocr_box_txt(
image,
boxes,
txts,
scores,
drop_score=rec_drop_score,
font_path=font_path,
)
mask = mask[0, 0, :, :] > mask_thresh
return save_pred, elapse, draw_img, mask.astype('uint8') * 255
def get_all_file_names_including_subdirs(dir_path):
all_file_names = []
for root, dirs, files in os.walk(dir_path):
for file_name in files:
all_file_names.append(os.path.join(root, file_name))
file_names_only = [os.path.basename(file) for file in all_file_names]
return file_names_only
def list_image_paths(directory):
image_extensions = ('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff')
image_paths = []
for root, dirs, files in os.walk(directory):
for file in files:
if file.lower().endswith(image_extensions):
relative_path = os.path.relpath(os.path.join(root, file),
directory)
full_path = os.path.join(directory, relative_path)
image_paths.append(full_path)
image_paths = sorted(image_paths)
return image_paths
def find_file_in_current_dir_and_subdirs(file_name):
for root, dirs, files in os.walk('.'):
if file_name in files:
relative_path = os.path.join(root, file_name)
return relative_path
e2e_img_example = list_image_paths('./OCR_e2e_img')
if __name__ == '__main__':
css = '.image-container img { width: 100%; max-height: 320px;}'
with gr.Blocks(css=css) as demo:
gr.HTML("""
<h1 style='text-align: center;'><a href="https://github.com/Topdu/OpenOCR">OpenOCR</a></h1>
<p style='text-align: center;'>准确高效的通用 OCR 系统 (由<a href="https://fvl.fudan.edu.cn">FVL实验室</a> <a href="https://github.com/Topdu/OpenOCR">OCR Team</a> 创建) <a href="https://github.com/Topdu/OpenOCR/tree/main?tab=readme-ov-file#quick-start">[本地快速部署]</a></p>"""
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label='Input image',
elem_classes=['image-container'])
examples = gr.Examples(examples=e2e_img_example,
inputs=input_image,
label='Examples')
downstream = gr.Button('Run')
# 添加参数调节组件
with gr.Column():
with gr.Row():
det_input_size_textbox = gr.Number(
label='Detection Input Size',
value=960,
info='检测网络输入尺寸的最长边,默认为960。')
det_score_mode_dropdown = gr.Dropdown(
['slow', 'fast'],
value='slow',
label='Detection Score Mode',
info='文本框的置信度计算模式,默认为 slow。slow 模式计算速度较慢,但准确度较高。fast 模式计算速度较快,但准确度较低。'
)
with gr.Row():
rec_drop_score_slider = gr.Slider(
0.0,
1.0,
value=0.4,
step=0.01,
label='Recognition Drop Score',
info='识别置信度阈值,默认值为0.4。低于该阈值的识别结果和对应的文本框被丢弃。')
mask_thresh_slider = gr.Slider(
0.0,
1.0,
value=0.3,
step=0.01,
label='Mask Threshold',
info='Mask 阈值,用于二值化 mask,默认值为0.3。如果存在文本截断时,请调低该值。')
with gr.Row():
box_thresh_slider = gr.Slider(
0.0,
1.0,
value=0.6,
step=0.01,
label='Box Threshold',
info='文本框置信度阈值,默认值为0.6。如果存在文本被漏检时,请调低该值。')
unclip_ratio_slider = gr.Slider(
1.5,
2.0,
value=1.5,
step=0.05,
label='Unclip Ratio',
info='文本框解析时的膨胀系数,默认值为1.5。值越大文本框越大。')
# 模型选择组件
model_type_dropdown = gr.Dropdown(
['mobile', 'server'],
value='mobile',
label='Model Type',
info='选择 OCR 模型类型:高效率模型mobile,高精度模型server。')
with gr.Column(scale=1):
img_mask = gr.Image(label='mask',
interactive=False,
elem_classes=['image-container'])
img_output = gr.Image(label=' ',
interactive=False,
elem_classes=['image-container'])
output = gr.Textbox(label='Result')
confidence = gr.Textbox(label='Latency')
downstream.click(fn=main,
inputs=[
input_image, model_type_dropdown,
det_input_size_textbox, rec_drop_score_slider,
mask_thresh_slider, box_thresh_slider,
unclip_ratio_slider, det_score_mode_dropdown
],
outputs=[
output,
confidence,
img_output,
img_mask,
])
demo.launch(share=True)
|