Spaces:
Running
Running
| import os | |
| import sys | |
| __dir__ = os.path.dirname(os.path.abspath(__file__)) | |
| sys.path.append(os.path.abspath(os.path.join(__dir__, '../..'))) | |
| import copy | |
| from torch.utils.data import DataLoader, DistributedSampler | |
| from tools.data.lmdb_dataset import LMDBDataSet | |
| from tools.data.lmdb_dataset_test import LMDBDataSetTest | |
| from tools.data.multi_scale_sampler import MultiScaleSampler | |
| from tools.data.ratio_dataset import RatioDataSet | |
| from tools.data.ratio_dataset_test import RatioDataSetTest | |
| from tools.data.ratio_dataset_tvresize_test import RatioDataSetTVResizeTest | |
| from tools.data.ratio_dataset_tvresize import RatioDataSetTVResize | |
| from tools.data.ratio_sampler import RatioSampler | |
| from tools.data.simple_dataset import MultiScaleDataSet, SimpleDataSet | |
| from tools.data.strlmdb_dataset import STRLMDBDataSet | |
| __all__ = [ | |
| 'build_dataloader', | |
| 'transform', | |
| 'create_operators', | |
| ] | |
| def build_dataloader(config, mode, logger, seed=None, epoch=3): | |
| config = copy.deepcopy(config) | |
| support_dict = [ | |
| 'SimpleDataSet', 'LMDBDataSet', 'MultiScaleDataSet', 'STRLMDBDataSet', | |
| 'LMDBDataSetTest', 'RatioDataSet', 'RatioDataSetTest', | |
| 'RatioDataSetTVResize', 'RatioDataSetTVResizeTest' | |
| ] | |
| module_name = config[mode]['dataset']['name'] | |
| assert module_name in support_dict, Exception( | |
| 'DataSet only support {}/{}'.format(support_dict, module_name)) | |
| assert mode in ['Train', 'Eval', | |
| 'Test'], 'Mode should be Train, Eval or Test.' | |
| dataset = eval(module_name)(config, mode, logger, seed, epoch=epoch) | |
| loader_config = config[mode]['loader'] | |
| batch_size = loader_config['batch_size_per_card'] | |
| drop_last = loader_config['drop_last'] | |
| shuffle = loader_config['shuffle'] | |
| num_workers = loader_config['num_workers'] | |
| if 'pin_memory' in loader_config.keys(): | |
| pin_memory = loader_config['use_shared_memory'] | |
| else: | |
| pin_memory = False | |
| sampler = None | |
| batch_sampler = None | |
| if 'sampler' in config[mode]: | |
| config_sampler = config[mode]['sampler'] | |
| sampler_name = config_sampler.pop('name') | |
| batch_sampler = eval(sampler_name)(dataset, **config_sampler) | |
| elif config['Global']['distributed'] and mode == 'Train': | |
| sampler = DistributedSampler(dataset=dataset, shuffle=shuffle) | |
| if 'collate_fn' in loader_config: | |
| from . import collate_fn | |
| collate_fn = getattr(collate_fn, loader_config['collate_fn'])() | |
| else: | |
| collate_fn = None | |
| if batch_sampler is None: | |
| data_loader = DataLoader( | |
| dataset=dataset, | |
| sampler=sampler, | |
| num_workers=num_workers, | |
| pin_memory=pin_memory, | |
| collate_fn=collate_fn, | |
| batch_size=batch_size, | |
| drop_last=drop_last, | |
| ) | |
| else: | |
| data_loader = DataLoader( | |
| dataset=dataset, | |
| batch_sampler=batch_sampler, | |
| num_workers=num_workers, | |
| pin_memory=pin_memory, | |
| collate_fn=collate_fn, | |
| ) | |
| if len(data_loader) == 0: | |
| logger.error( | |
| f'No Images in {mode.lower()} dataloader, please ensure\n' | |
| '\t1. The images num in the train label_file_list should be larger than or equal with batch size.\n' | |
| '\t2. The annotation file and path in the configuration file are provided normally.\n' | |
| '\t3. The BatchSize is large than images.') | |
| sys.exit() | |
| return data_loader | |