Spaces:
Running
Running
| # -------------------------------------------------------- | |
| # FocalNets -- Focal Modulation Networks | |
| # Copyright (c) 2022 Microsoft | |
| # Licensed under The MIT License [see LICENSE for details] | |
| # Written by Jianwei Yang ([email protected]) | |
| # -------------------------------------------------------- | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint as checkpoint | |
| from torch.nn.init import trunc_normal_ | |
| from openrec.modeling.common import DropPath, Mlp | |
| from openrec.modeling.encoders.svtrnet import ConvBNLayer | |
| class FocalModulation(nn.Module): | |
| def __init__(self, | |
| dim, | |
| focal_window, | |
| focal_level, | |
| max_kh=None, | |
| focal_factor=2, | |
| bias=True, | |
| proj_drop=0.0, | |
| use_postln_in_modulation=False, | |
| normalize_modulator=False): | |
| super().__init__() | |
| self.dim = dim | |
| self.focal_window = focal_window | |
| self.focal_level = focal_level | |
| self.focal_factor = focal_factor | |
| self.use_postln_in_modulation = use_postln_in_modulation | |
| self.normalize_modulator = normalize_modulator | |
| self.f = nn.Linear(dim, 2 * dim + (self.focal_level + 1), bias=bias) | |
| self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias) | |
| self.act = nn.GELU() | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| self.focal_layers = nn.ModuleList() | |
| self.kernel_sizes = [] | |
| for k in range(self.focal_level): | |
| kernel_size = self.focal_factor * k + self.focal_window | |
| if max_kh is not None: | |
| k_h, k_w = [min(kernel_size, max_kh), kernel_size] | |
| kernel_size = [k_h, k_w] | |
| padding = [k_h // 2, k_w // 2] | |
| else: | |
| padding = kernel_size // 2 | |
| self.focal_layers.append( | |
| nn.Sequential( | |
| nn.Conv2d(dim, | |
| dim, | |
| kernel_size=kernel_size, | |
| stride=1, | |
| groups=dim, | |
| padding=padding, | |
| bias=False), | |
| nn.GELU(), | |
| )) | |
| self.kernel_sizes.append(kernel_size) | |
| if self.use_postln_in_modulation: | |
| self.ln = nn.LayerNorm(dim) | |
| def forward(self, x): | |
| """ | |
| Args: | |
| x: input features with shape of (B, H, W, C) | |
| """ | |
| C = x.shape[-1] | |
| # pre linear projection | |
| x = self.f(x).permute(0, 3, 1, 2).contiguous() | |
| q, ctx, self.gates = torch.split(x, (C, C, self.focal_level + 1), 1) | |
| # context aggreation | |
| ctx_all = 0 | |
| for l in range(self.focal_level): | |
| ctx = self.focal_layers[l](ctx) | |
| ctx_all = ctx_all + ctx * self.gates[:, l:l + 1] | |
| ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True)) | |
| ctx_all = ctx_all + ctx_global * self.gates[:, self.focal_level:] | |
| # normalize context | |
| if self.normalize_modulator: | |
| ctx_all = ctx_all / (self.focal_level + 1) | |
| # focal modulation | |
| self.modulator = self.h(ctx_all) | |
| x_out = q * self.modulator | |
| x_out = x_out.permute(0, 2, 3, 1).contiguous() | |
| if self.use_postln_in_modulation: | |
| x_out = self.ln(x_out) | |
| # post linear porjection | |
| x_out = self.proj(x_out) | |
| x_out = self.proj_drop(x_out) | |
| return x_out | |
| def extra_repr(self) -> str: | |
| return f'dim={self.dim}' | |
| def flops(self, N): | |
| # calculate flops for 1 window with token length of N | |
| flops = 0 | |
| flops += N * self.dim * (self.dim * 2 + (self.focal_level + 1)) | |
| # focal convolution | |
| for k in range(self.focal_level): | |
| flops += N * (self.kernel_sizes[k]**2 + 1) * self.dim | |
| # global gating | |
| flops += N * 1 * self.dim | |
| # self.linear | |
| flops += N * self.dim * (self.dim + 1) | |
| # x = self.proj(x) | |
| flops += N * self.dim * self.dim | |
| return flops | |
| class FocalNetBlock(nn.Module): | |
| r"""Focal Modulation Network Block. | |
| Args: | |
| dim (int): Number of input channels. | |
| input_resolution (tuple[int]): Input resulotion. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| drop (float, optional): Dropout rate. Default: 0.0 | |
| drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
| act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| focal_level (int): Number of focal levels. | |
| focal_window (int): Focal window size at first focal level | |
| use_layerscale (bool): Whether use layerscale | |
| layerscale_value (float): Initial layerscale value | |
| use_postln (bool): Whether use layernorm after modulation | |
| """ | |
| def __init__( | |
| self, | |
| dim, | |
| input_resolution=None, | |
| mlp_ratio=4.0, | |
| drop=0.0, | |
| drop_path=0.0, | |
| act_layer=nn.GELU, | |
| norm_layer=nn.LayerNorm, | |
| focal_level=1, | |
| focal_window=3, | |
| max_kh=None, | |
| use_layerscale=False, | |
| layerscale_value=1e-4, | |
| use_postln=False, | |
| use_postln_in_modulation=False, | |
| normalize_modulator=False, | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.input_resolution = input_resolution | |
| self.mlp_ratio = mlp_ratio | |
| self.focal_window = focal_window | |
| self.focal_level = focal_level | |
| self.use_postln = use_postln | |
| self.norm1 = norm_layer(dim) | |
| self.modulation = FocalModulation( | |
| dim, | |
| proj_drop=drop, | |
| focal_window=focal_window, | |
| focal_level=self.focal_level, | |
| max_kh=max_kh, | |
| use_postln_in_modulation=use_postln_in_modulation, | |
| normalize_modulator=normalize_modulator, | |
| ) | |
| self.drop_path = DropPath( | |
| drop_path) if drop_path > 0.0 else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = Mlp(in_features=dim, | |
| hidden_features=mlp_hidden_dim, | |
| act_layer=act_layer, | |
| drop=drop) | |
| self.gamma_1 = 1.0 | |
| self.gamma_2 = 1.0 | |
| if use_layerscale: | |
| self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), | |
| requires_grad=True) | |
| self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), | |
| requires_grad=True) | |
| self.H = None | |
| self.W = None | |
| def forward(self, x): | |
| H, W = self.H, self.W | |
| B, L, C = x.shape | |
| shortcut = x | |
| # Focal Modulation | |
| x = x if self.use_postln else self.norm1(x) | |
| x = x.view(B, H, W, C) | |
| x = self.modulation(x).view(B, H * W, C) | |
| x = x if not self.use_postln else self.norm1(x) | |
| # FFN | |
| x = shortcut + self.drop_path(self.gamma_1 * x) | |
| x = x + self.drop_path(self.gamma_2 * (self.norm2( | |
| self.mlp(x)) if self.use_postln else self.mlp(self.norm2(x)))) | |
| return x | |
| def extra_repr(self) -> str: | |
| return f'dim={self.dim}, input_resolution={self.input_resolution}, ' f'mlp_ratio={self.mlp_ratio}' | |
| def flops(self): | |
| flops = 0 | |
| H, W = self.input_resolution | |
| # norm1 | |
| flops += self.dim * H * W | |
| # W-MSA/SW-MSA | |
| flops += self.modulation.flops(H * W) | |
| # mlp | |
| flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio | |
| # norm2 | |
| flops += self.dim * H * W | |
| return flops | |
| class BasicLayer(nn.Module): | |
| """A basic Focal Transformer layer for one stage. | |
| Args: | |
| dim (int): Number of input channels. | |
| input_resolution (tuple[int]): Input resolution. | |
| depth (int): Number of blocks. | |
| window_size (int): Local window size. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
| drop (float, optional): Dropout rate. Default: 0.0 | |
| drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
| use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
| focal_level (int): Number of focal levels | |
| focal_window (int): Focal window size at first focal level | |
| use_layerscale (bool): Whether use layerscale | |
| layerscale_value (float): Initial layerscale value | |
| use_postln (bool): Whether use layernorm after modulation | |
| """ | |
| def __init__( | |
| self, | |
| dim, | |
| out_dim, | |
| input_resolution, | |
| depth, | |
| mlp_ratio=4.0, | |
| drop=0.0, | |
| drop_path=0.0, | |
| norm_layer=nn.LayerNorm, | |
| downsample=None, | |
| downsample_kernel=[], | |
| use_checkpoint=False, | |
| focal_level=1, | |
| focal_window=1, | |
| use_conv_embed=False, | |
| use_layerscale=False, | |
| layerscale_value=1e-4, | |
| use_postln=False, | |
| use_postln_in_modulation=False, | |
| normalize_modulator=False, | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.input_resolution = input_resolution | |
| self.depth = depth | |
| self.use_checkpoint = use_checkpoint | |
| # build blocks | |
| self.blocks = nn.ModuleList([ | |
| FocalNetBlock( | |
| dim=dim, | |
| input_resolution=input_resolution, | |
| mlp_ratio=mlp_ratio, | |
| drop=drop, | |
| drop_path=drop_path[i] | |
| if isinstance(drop_path, list) else drop_path, | |
| norm_layer=norm_layer, | |
| focal_level=focal_level, | |
| focal_window=focal_window, | |
| use_layerscale=use_layerscale, | |
| layerscale_value=layerscale_value, | |
| use_postln=use_postln, | |
| use_postln_in_modulation=use_postln_in_modulation, | |
| normalize_modulator=normalize_modulator, | |
| ) for i in range(depth) | |
| ]) | |
| if downsample is not None: | |
| self.downsample = downsample( | |
| img_size=input_resolution, | |
| patch_size=downsample_kernel, | |
| in_chans=dim, | |
| embed_dim=out_dim, | |
| use_conv_embed=use_conv_embed, | |
| norm_layer=norm_layer, | |
| is_stem=False, | |
| ) | |
| else: | |
| self.downsample = None | |
| def forward(self, x, H, W): | |
| for blk in self.blocks: | |
| blk.H, blk.W = H, W | |
| if self.use_checkpoint: | |
| x = checkpoint.checkpoint(blk, x) | |
| else: | |
| x = blk(x) | |
| if self.downsample is not None: | |
| x = x.transpose(1, 2).reshape(x.shape[0], -1, H, W) | |
| x, Ho, Wo = self.downsample(x) | |
| else: | |
| Ho, Wo = H, W | |
| return x, Ho, Wo | |
| def extra_repr(self) -> str: | |
| return f'dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}' | |
| def flops(self): | |
| flops = 0 | |
| for blk in self.blocks: | |
| flops += blk.flops() | |
| if self.downsample is not None: | |
| flops += self.downsample.flops() | |
| return flops | |
| class PatchEmbed(nn.Module): | |
| r"""Image to Patch Embedding | |
| Args: | |
| img_size (int): Image size. Default: 224. | |
| patch_size (int): Patch token size. Default: 4. | |
| in_chans (int): Number of input image channels. Default: 3. | |
| embed_dim (int): Number of linear projection output channels. Default: 96. | |
| norm_layer (nn.Module, optional): Normalization layer. Default: None | |
| """ | |
| def __init__(self, | |
| img_size=(224, 224), | |
| patch_size=[4, 4], | |
| in_chans=3, | |
| embed_dim=96, | |
| use_conv_embed=False, | |
| norm_layer=None, | |
| is_stem=False): | |
| super().__init__() | |
| # patch_size = to_2tuple(patch_size) | |
| patches_resolution = [ | |
| img_size[0] // patch_size[0], img_size[1] // patch_size[1] | |
| ] | |
| self.img_size = img_size | |
| self.patch_size = patch_size | |
| self.patches_resolution = patches_resolution | |
| self.num_patches = patches_resolution[0] * patches_resolution[1] | |
| self.in_chans = in_chans | |
| self.embed_dim = embed_dim | |
| if use_conv_embed: | |
| # if we choose to use conv embedding, then we treat the stem and non-stem differently | |
| if is_stem: | |
| kernel_size = 7 | |
| padding = 2 | |
| stride = 4 | |
| else: | |
| kernel_size = 3 | |
| padding = 1 | |
| stride = 2 | |
| self.proj = nn.Conv2d(in_chans, | |
| embed_dim, | |
| kernel_size=kernel_size, | |
| stride=stride, | |
| padding=padding) | |
| else: | |
| self.proj = nn.Conv2d(in_chans, | |
| embed_dim, | |
| kernel_size=patch_size, | |
| stride=patch_size) | |
| if norm_layer is not None: | |
| self.norm = norm_layer(embed_dim) | |
| else: | |
| self.norm = None | |
| def forward(self, x): | |
| B, C, H, W = x.shape | |
| x = self.proj(x) | |
| H, W = x.shape[2:] | |
| x = x.flatten(2).transpose(1, 2) # B Ph*Pw C | |
| if self.norm is not None: | |
| x = self.norm(x) | |
| return x, H, W | |
| def flops(self): | |
| Ho, Wo = self.patches_resolution | |
| flops = Ho * Wo * self.embed_dim * self.in_chans * ( | |
| self.patch_size[0] * self.patch_size[1]) | |
| if self.norm is not None: | |
| flops += Ho * Wo * self.embed_dim | |
| return flops | |
| class FocalSVTR(nn.Module): | |
| r"""Focal Modulation Networks (FocalNets) | |
| Args: | |
| img_size (int | tuple(int)): Input image size. Default [32, 128] | |
| patch_size (int | tuple(int)): Patch size. Default: [4, 4] | |
| in_chans (int): Number of input image channels. Default: 3 | |
| num_classes (int): Number of classes for classification head. Default: 1000 | |
| embed_dim (int): Patch embedding dimension. Default: 96 | |
| depths (tuple(int)): Depth of each Focal Transformer layer. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 | |
| drop_rate (float): Dropout rate. Default: 0 | |
| drop_path_rate (float): Stochastic depth rate. Default: 0.1 | |
| norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. | |
| patch_norm (bool): If True, add normalization after patch embedding. Default: True | |
| use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False | |
| focal_levels (list): How many focal levels at all stages. Note that this excludes the finest-grain level. Default: [1, 1, 1, 1] | |
| focal_windows (list): The focal window size at all stages. Default: [7, 5, 3, 1] | |
| use_conv_embed (bool): Whether use convolutional embedding. We noted that using convolutional embedding usually improve the performance, | |
| but we do not use it by default. Default: False | |
| use_layerscale (bool): Whether use layerscale proposed in CaiT. Default: False | |
| layerscale_value (float): Value for layer scale. Default: 1e-4 | |
| use_postln (bool): Whether use layernorm after modulation (it helps stablize training of large models) | |
| """ | |
| def __init__( | |
| self, | |
| img_size=[32, 128], | |
| patch_size=[4, 4], | |
| out_channels=256, | |
| out_char_num=25, | |
| in_channels=3, | |
| embed_dim=96, | |
| depths=[3, 6, 3], | |
| sub_k=[[2, 1], [2, 1], [1, 1]], | |
| last_stage=False, | |
| mlp_ratio=4.0, | |
| drop_rate=0.0, | |
| drop_path_rate=0.1, | |
| norm_layer=nn.LayerNorm, | |
| patch_norm=True, | |
| use_checkpoint=False, | |
| focal_levels=[6, 6, 6], | |
| focal_windows=[3, 3, 3], | |
| use_conv_embed=False, | |
| use_layerscale=False, | |
| layerscale_value=1e-4, | |
| use_postln=False, | |
| use_postln_in_modulation=False, | |
| normalize_modulator=False, | |
| feat2d=False, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.num_layers = len(depths) | |
| embed_dim = [embed_dim * (2**i) for i in range(self.num_layers)] | |
| self.feat2d = feat2d | |
| self.embed_dim = embed_dim | |
| self.patch_norm = patch_norm | |
| self.num_features = embed_dim[-1] | |
| self.mlp_ratio = mlp_ratio | |
| self.patch_embed = nn.Sequential( | |
| ConvBNLayer( | |
| in_channels=in_channels, | |
| out_channels=embed_dim[0] // 2, | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| act=nn.GELU, | |
| bias=None, | |
| ), | |
| ConvBNLayer( | |
| in_channels=embed_dim[0] // 2, | |
| out_channels=embed_dim[0], | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| act=nn.GELU, | |
| bias=None, | |
| ), | |
| ) | |
| patches_resolution = [ | |
| img_size[0] // patch_size[0], img_size[1] // patch_size[1] | |
| ] | |
| self.patches_resolution = patches_resolution | |
| self.pos_drop = nn.Dropout(p=drop_rate) | |
| # stochastic depth | |
| dpr = [ | |
| x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) | |
| ] # stochastic depth decay rule | |
| # build layers | |
| self.layers = nn.ModuleList() | |
| for i_layer in range(self.num_layers): | |
| layer = BasicLayer( | |
| dim=embed_dim[i_layer], | |
| out_dim=embed_dim[i_layer + 1] if | |
| (i_layer < self.num_layers - 1) else None, | |
| input_resolution=patches_resolution, | |
| depth=depths[i_layer], | |
| mlp_ratio=self.mlp_ratio, | |
| drop=drop_rate, | |
| drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], | |
| norm_layer=norm_layer, | |
| downsample=PatchEmbed if | |
| (i_layer < self.num_layers - 1) else None, | |
| downsample_kernel=sub_k[i_layer], | |
| focal_level=focal_levels[i_layer], | |
| focal_window=focal_windows[i_layer], | |
| use_conv_embed=use_conv_embed, | |
| use_checkpoint=use_checkpoint, | |
| use_layerscale=use_layerscale, | |
| layerscale_value=layerscale_value, | |
| use_postln=use_postln, | |
| use_postln_in_modulation=use_postln_in_modulation, | |
| normalize_modulator=normalize_modulator, | |
| ) | |
| patches_resolution = [ | |
| patches_resolution[0] // sub_k[i_layer][0], | |
| patches_resolution[1] // sub_k[i_layer][1] | |
| ] | |
| self.layers.append(layer) | |
| self.out_channels = self.num_features | |
| self.last_stage = last_stage | |
| if last_stage: | |
| self.out_channels = out_channels | |
| self.last_conv = nn.Linear(self.num_features, | |
| self.out_channels, | |
| bias=False) | |
| self.hardswish = nn.Hardswish() | |
| self.dropout = nn.Dropout(p=0.1) | |
| # self.avg_pool = nn.AdaptiveAvgPool2d([1, out_char_num]) | |
| # self.last_conv = nn.Conv2d( | |
| # in_channels=self.num_features, | |
| # out_channels=self.out_channels, | |
| # kernel_size=1, | |
| # stride=1, | |
| # padding=0, | |
| # bias=False, | |
| # ) | |
| # self.hardswish = nn.Hardswish() | |
| # self.dropout = nn.Dropout(p=0.1) | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=0.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| elif isinstance(m, nn.Conv2d): | |
| nn.init.kaiming_normal_(m.weight, | |
| mode='fan_out', | |
| nonlinearity='relu') | |
| def no_weight_decay(self): | |
| return {'patch_embed', 'downsample'} | |
| def forward(self, x): | |
| if len(x.shape) == 5: | |
| x = x.flatten(0, 1) | |
| x = self.patch_embed(x) | |
| H, W = x.shape[2:] | |
| x = x.flatten(2).transpose(1, 2) # B Ph*Pw C | |
| x = self.pos_drop(x) | |
| for layer in self.layers: | |
| x, H, W = layer(x, H, W) | |
| if self.feat2d: | |
| x = x.transpose(1, 2).reshape(-1, self.num_features, H, W) | |
| if self.last_stage: | |
| x = x.reshape(-1, H, W, self.num_features).mean(1) | |
| x = self.last_conv(x) | |
| x = self.hardswish(x) | |
| x = self.dropout(x) | |
| # x = self.avg_pool(x.transpose(1, 2).reshape(-1, self.num_features, H, W)) | |
| # x = self.last_conv(x) | |
| # x = self.hardswish(x) | |
| # x = self.dropout(x) | |
| # x = x.flatten(2).transpose(1, 2) | |
| return x | |
| def flops(self): | |
| flops = 0 | |
| flops += self.patch_embed.flops() | |
| for i, layer in enumerate(self.layers): | |
| flops += layer.flops() | |
| flops += self.num_features * self.patches_resolution[ | |
| 0] * self.patches_resolution[1] // (2**self.num_layers) | |
| return flops | |