Spaces:
Running
Running
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.nn.init import trunc_normal_ | |
| from openrec.modeling.common import DropPath | |
| class LayerNorm(nn.Module): | |
| """ LayerNorm that supports two data formats: channels_last (default) or channels_first. | |
| The ordering of the dimensions in the inputs. channels_last corresponds to inputs with | |
| shape (batch_size, height, width, channels) while channels_first corresponds to inputs | |
| with shape (batch_size, channels, height, width). | |
| """ | |
| def __init__(self, | |
| normalized_shape, | |
| eps=1e-6, | |
| data_format='channels_last'): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
| self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
| self.eps = eps | |
| self.data_format = data_format | |
| if self.data_format not in ['channels_last', 'channels_first']: | |
| raise NotImplementedError | |
| self.normalized_shape = (normalized_shape, ) | |
| def forward(self, x): | |
| if self.data_format == 'channels_last': | |
| return F.layer_norm(x, self.normalized_shape, self.weight, | |
| self.bias, self.eps) | |
| elif self.data_format == 'channels_first': | |
| u = x.mean(1, keepdim=True) | |
| s = (x - u).pow(2).mean(1, keepdim=True) | |
| x = (x - u) / torch.sqrt(s + self.eps) | |
| x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
| return x | |
| class GRN(nn.Module): | |
| """ GRN (Global Response Normalization) layer | |
| """ | |
| def __init__(self, dim): | |
| super().__init__() | |
| self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) | |
| self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) | |
| def forward(self, inputs, mask=None): | |
| x = inputs | |
| if mask is not None: | |
| x = x * (1. - mask) | |
| Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) | |
| Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) | |
| return self.gamma * (inputs * Nx) + self.beta + inputs | |
| class Block(nn.Module): | |
| """ ConvNeXtV2 Block. | |
| Args: | |
| dim (int): Number of input channels. | |
| drop_path (float): Stochastic depth rate. Default: 0.0 | |
| """ | |
| def __init__(self, dim, drop_path=0.): | |
| super().__init__() | |
| self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, | |
| groups=dim) # depthwise conv | |
| self.norm = LayerNorm(dim, eps=1e-6) | |
| self.pwconv1 = nn.Linear( | |
| dim, | |
| 4 * dim) # pointwise/1x1 convs, implemented with linear layers | |
| self.act = nn.GELU() | |
| self.grn = GRN(4 * dim) | |
| self.pwconv2 = nn.Linear(4 * dim, dim) | |
| self.drop_path = DropPath( | |
| drop_path) if drop_path > 0. else nn.Identity() | |
| def forward(self, x): | |
| input = x | |
| x = self.dwconv(x.contiguous()) | |
| x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) | |
| x = self.norm(x) | |
| x = self.pwconv1(x) | |
| x = self.act(x) | |
| x = self.grn(x) | |
| x = self.pwconv2(x) | |
| x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) | |
| x = input + self.drop_path(x) | |
| return x | |
| class ConvNeXtV2(nn.Module): | |
| """ ConvNeXt V2 | |
| Args: | |
| in_chans (int): Number of input image channels. Default: 3 | |
| num_classes (int): Number of classes for classification head. Default: 1000 | |
| depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] | |
| dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] | |
| drop_path_rate (float): Stochastic depth rate. Default: 0. | |
| head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels=3, | |
| depths=[3, 3, 9, 3], | |
| dims=[96, 192, 384, 768], | |
| drop_path_rate=0., | |
| strides=[(4, 4), (2, 2), (2, 2), (2, 2)], | |
| out_channels=256, | |
| last_stage=False, | |
| feat2d=False, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.strides = strides | |
| self.depths = depths | |
| self.downsample_layers = nn.ModuleList( | |
| ) # stem and 3 intermediate downsampling conv layers | |
| stem = nn.Sequential( | |
| nn.Conv2d(in_channels, | |
| dims[0], | |
| kernel_size=strides[0], | |
| stride=strides[0]), | |
| LayerNorm(dims[0], eps=1e-6, data_format='channels_first')) | |
| self.downsample_layers.append(stem) | |
| for i in range(3): | |
| downsample_layer = nn.Sequential( | |
| LayerNorm(dims[i], eps=1e-6, data_format='channels_first'), | |
| nn.Conv2d(dims[i], | |
| dims[i + 1], | |
| kernel_size=strides[i + 1], | |
| stride=strides[i + 1]), | |
| ) | |
| self.downsample_layers.append(downsample_layer) | |
| self.stages = nn.ModuleList( | |
| ) # 4 feature resolution stages, each consisting of multiple residual blocks | |
| dp_rates = [ | |
| x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) | |
| ] | |
| cur = 0 | |
| for i in range(4): | |
| stage = nn.Sequential(*[ | |
| Block(dim=dims[i], drop_path=dp_rates[cur + j]) | |
| for j in range(depths[i]) | |
| ]) | |
| self.stages.append(stage) | |
| cur += depths[i] | |
| self.out_channels = dims[-1] | |
| self.last_stage = last_stage | |
| self.feat2d = feat2d | |
| if last_stage: | |
| self.out_channels = out_channels | |
| self.last_conv = nn.Linear(dims[-1], self.out_channels, bias=False) | |
| self.hardswish = nn.Hardswish() | |
| self.dropout = nn.Dropout(p=0.1) | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, (nn.Conv2d, nn.Linear)): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, (nn.Conv2d, nn.Linear)) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| if m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| if m.weight is not None: | |
| nn.init.constant_(m.weight, 1.0) | |
| elif isinstance(m, nn.SyncBatchNorm): | |
| if m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| if m.weight is not None: | |
| nn.init.constant_(m.weight, 1.0) | |
| elif isinstance(m, nn.BatchNorm2d): | |
| if m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| if m.weight is not None: | |
| nn.init.constant_(m.weight, 1.0) | |
| def no_weight_decay(self): | |
| return {} | |
| def forward(self, x): | |
| feats = [] | |
| for i in range(4): | |
| x = self.downsample_layers[i](x) | |
| x = self.stages[i](x) | |
| feats.append(x) | |
| if self.last_stage: | |
| x = x.mean(2).transpose(1, 2) | |
| x = self.last_conv(x) | |
| x = self.hardswish(x) | |
| x = self.dropout(x) | |
| return x | |
| if self.feat2d: | |
| return x | |
| return feats | |