Spaces:
Build error
Build error
hellopahe
commited on
Commit
·
93e5f33
1
Parent(s):
7090141
加入中英文分句的判断
Browse files- app.py +12 -115
- article_extractor/data_utils.py +0 -321
- article_extractor/tokenizers_pegasus.py +0 -602
- embed.py +1 -0
- lex_rank.py +44 -0
- LexRank.py → lex_rank_util.py +0 -0
- luotuo_util.py +0 -82
- requirements.txt +2 -1
- tmp/placeholder +0 -0
app.py
CHANGED
|
@@ -1,126 +1,25 @@
|
|
| 1 |
-
import math
|
| 2 |
|
| 3 |
-
import
|
| 4 |
-
import torch
|
| 5 |
-
import gradio as gr
|
| 6 |
-
|
| 7 |
-
from transformers import PegasusForConditionalGeneration, Text2TextGenerationPipeline, AutoModel, AutoTokenizer
|
| 8 |
-
from article_extractor.tokenizers_pegasus import PegasusTokenizer
|
| 9 |
-
|
| 10 |
-
import tensorflow as tf
|
| 11 |
-
|
| 12 |
-
from harvesttext import HarvestText
|
| 13 |
from sentence_transformers import SentenceTransformer, util
|
| 14 |
-
from LexRank import degree_centrality_scores
|
| 15 |
-
|
| 16 |
-
from luotuo_util import DeviceMap
|
| 17 |
-
from peft import get_peft_model, LoraConfig, TaskType
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
class SummaryExtractor(object):
|
| 21 |
-
def __init__(self):
|
| 22 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
-
self.model = PegasusForConditionalGeneration.from_pretrained('IDEA-CCNL/Randeng-Pegasus-523M-Summary-Chinese').to(self.device)
|
| 24 |
-
self.tokenizer = PegasusTokenizer.from_pretrained("IDEA-CCNL/Randeng-Pegasus-523M-Summary-Chinese")
|
| 25 |
-
self.text2text_genr = Text2TextGenerationPipeline(self.model, self.tokenizer, device=self.device)
|
| 26 |
-
|
| 27 |
-
def extract(self, content: str) -> str:
|
| 28 |
-
print(content)
|
| 29 |
-
return str(self.text2text_genr(content, do_sample=False, num_return_sequences=3)[0]["generated_text"])
|
| 30 |
-
|
| 31 |
-
class Tuoling_6B_extractor(object):
|
| 32 |
-
def __init__(self):
|
| 33 |
-
torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
| 34 |
-
self.tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
| 35 |
-
self.model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, device_map=DeviceMap("ChatGLM").get())
|
| 36 |
-
|
| 37 |
-
# load fine-tuned pretrained model.
|
| 38 |
-
peft_path = "./luotuoC.pt"
|
| 39 |
-
peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM, inference_mode=True, r=8, lora_alpha=32, lora_dropout=0.1)
|
| 40 |
-
self.model = get_peft_model(self.model, peft_config)
|
| 41 |
-
self.model.load_state_dict(torch.load(peft_path), strict=False)
|
| 42 |
-
torch.set_default_tensor_type(torch.cuda.FloatTensor)
|
| 43 |
-
|
| 44 |
-
@staticmethod
|
| 45 |
-
def format_example(example: dict) -> dict:
|
| 46 |
-
context = f"Instruction: {example['instruction']}\n"
|
| 47 |
-
if example.get("input"):
|
| 48 |
-
context += f"Input: {example['input']}\n"
|
| 49 |
-
context += "Answer: "
|
| 50 |
-
target = example["output"]
|
| 51 |
-
return {"context": context, "target": target}
|
| 52 |
|
| 53 |
-
def extract(self, instruction: str, input=None) -> str:
|
| 54 |
-
with torch.no_grad():
|
| 55 |
-
feature = Tuoling_6B_extractor.format_example(
|
| 56 |
-
{"instruction": "请帮我总结以下内容", "output": "", "input": f"{instruction}"}
|
| 57 |
-
)
|
| 58 |
-
input_text = feature["context"]
|
| 59 |
-
input_ids = self.tokenizer.encode(input_text, return_tensors="pt")
|
| 60 |
-
out = self.model.generate(input_ids=input_ids, max_length=2048, temperature=0)
|
| 61 |
-
answer = self.tokenizer.decode(out[0])
|
| 62 |
-
return answer.split('Answer:')[1]
|
| 63 |
|
| 64 |
-
|
| 65 |
-
def __init__(self):
|
| 66 |
-
self.model = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
|
| 67 |
-
self.ht = HarvestText()
|
| 68 |
-
|
| 69 |
-
def find_central(self, content: str, num=100):
|
| 70 |
-
sentences = self.ht.cut_sentences(content)
|
| 71 |
-
embeddings = self.model.encode(sentences, convert_to_tensor=True).cpu()
|
| 72 |
-
|
| 73 |
-
# Compute the pair-wise cosine similarities
|
| 74 |
-
cos_scores = util.cos_sim(embeddings, embeddings).numpy()
|
| 75 |
-
|
| 76 |
-
# Compute the centrality for each sentence
|
| 77 |
-
centrality_scores = degree_centrality_scores(cos_scores, threshold=None)
|
| 78 |
-
|
| 79 |
-
# We argsort so that the first element is the sentence with the highest score
|
| 80 |
-
most_central_sentence_indices = numpy.argsort(-centrality_scores)
|
| 81 |
-
|
| 82 |
-
# num = 100
|
| 83 |
-
res = []
|
| 84 |
-
for index in most_central_sentence_indices:
|
| 85 |
-
if num < 0:
|
| 86 |
-
break
|
| 87 |
-
res.append(sentences[index])
|
| 88 |
-
num -= len(sentences[index])
|
| 89 |
-
return res
|
| 90 |
-
|
| 91 |
-
# ---===--- worker instances ---===---
|
| 92 |
-
# t_randeng = SummaryExtractor()
|
| 93 |
-
# t_tuoling = Tuoling_6B_extractor()
|
| 94 |
-
|
| 95 |
-
# embedder = Embed()
|
| 96 |
embedder = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
|
| 97 |
lex = LexRank()
|
| 98 |
|
| 99 |
|
| 100 |
-
|
|
|
|
| 101 |
summary_length = math.ceil(len(content) / 10)
|
| 102 |
sentences = lex.find_central(content, num=summary_length)
|
| 103 |
output = ""
|
| 104 |
for index, sentence in enumerate(sentences):
|
| 105 |
output += f"{index}: {sentence}\n"
|
| 106 |
-
# output += "摘要:\n"
|
| 107 |
-
# for index, sentence in enumerate(sentences):
|
| 108 |
-
# output += f"{index}: {t_randeng.extract(sentence)}\n"
|
| 109 |
return output
|
| 110 |
|
| 111 |
-
# def tuoling_extract(content):
|
| 112 |
-
# sentences = lex.find_central(content)
|
| 113 |
-
# return str(list(t_tuoling.extract(sentence) for sentence in sentences))
|
| 114 |
-
|
| 115 |
-
def similarity_check(query, doc):
|
| 116 |
-
doc_list = doc.split("\n")
|
| 117 |
-
|
| 118 |
-
query_embedding = embedder.encode(query)
|
| 119 |
-
doc_embedding = embedder.encode(doc_list)
|
| 120 |
-
scores = (query_embedding @ tf.transpose(doc_embedding))[0].numpy().tolist()
|
| 121 |
-
# scores = list(util.cos_sim(embedding_list[-1], doc_embedding) for doc_embedding in embedding_list[:-1])
|
| 122 |
-
return str(scores)
|
| 123 |
|
|
|
|
| 124 |
def similarity_search(queries, doc):
|
| 125 |
doc_list = doc.split('\n')
|
| 126 |
query_list = queries.split('\n')
|
|
@@ -141,17 +40,13 @@ def similarity_search(queries, doc):
|
|
| 141 |
return output
|
| 142 |
|
| 143 |
|
|
|
|
| 144 |
with gr.Blocks() as app:
|
| 145 |
gr.Markdown("从下面的标签选择测试模块 [摘要生成,相似度检测]")
|
| 146 |
with gr.Tab("LexRank"):
|
| 147 |
text_input_1 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000)
|
| 148 |
text_button_1 = gr.Button("生成摘要")
|
| 149 |
text_output_1 = gr.Textbox(label="摘要文本(长度设置为原文长度的1/10)", lines=10)
|
| 150 |
-
|
| 151 |
-
# with gr.Tab("LexRank->Tuoling-6B-chatGLM"):
|
| 152 |
-
# text_input = gr.Textbox(label="请输入长文本:", max_lines=1000)
|
| 153 |
-
# text_output = gr.Textbox(label="摘要文本")
|
| 154 |
-
# text_button = gr.Button("生成摘要")
|
| 155 |
with gr.Tab("相似度检测"):
|
| 156 |
with gr.Row():
|
| 157 |
text_input_query = gr.Textbox(lines=10, label="查询文本")
|
|
@@ -159,11 +54,13 @@ with gr.Blocks() as app:
|
|
| 159 |
text_button_similarity = gr.Button("对比相似度")
|
| 160 |
text_output_similarity = gr.Textbox()
|
| 161 |
|
| 162 |
-
|
| 163 |
-
text_button_1.click(randeng_extract, inputs=text_input_1, outputs=text_output_1)
|
| 164 |
text_button_similarity.click(similarity_search, inputs=[text_input_query, text_input_doc], outputs=text_output_similarity)
|
| 165 |
|
| 166 |
app.launch(
|
|
|
|
| 167 |
# share=True,
|
| 168 |
-
# debug=True
|
|
|
|
|
|
|
| 169 |
)
|
|
|
|
| 1 |
+
import math, torch, gradio as gr
|
| 2 |
|
| 3 |
+
from lex_rank import LexRank
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from sentence_transformers import SentenceTransformer, util
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
# ---===--- instances ---===---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
embedder = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
|
| 9 |
lex = LexRank()
|
| 10 |
|
| 11 |
|
| 12 |
+
# 摘要方法
|
| 13 |
+
def extract_handler(content):
|
| 14 |
summary_length = math.ceil(len(content) / 10)
|
| 15 |
sentences = lex.find_central(content, num=summary_length)
|
| 16 |
output = ""
|
| 17 |
for index, sentence in enumerate(sentences):
|
| 18 |
output += f"{index}: {sentence}\n"
|
|
|
|
|
|
|
|
|
|
| 19 |
return output
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
# 相似度检测方法
|
| 23 |
def similarity_search(queries, doc):
|
| 24 |
doc_list = doc.split('\n')
|
| 25 |
query_list = queries.split('\n')
|
|
|
|
| 40 |
return output
|
| 41 |
|
| 42 |
|
| 43 |
+
# web ui
|
| 44 |
with gr.Blocks() as app:
|
| 45 |
gr.Markdown("从下面的标签选择测试模块 [摘要生成,相似度检测]")
|
| 46 |
with gr.Tab("LexRank"):
|
| 47 |
text_input_1 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000)
|
| 48 |
text_button_1 = gr.Button("生成摘要")
|
| 49 |
text_output_1 = gr.Textbox(label="摘要文本(长度设置为原文长度的1/10)", lines=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
with gr.Tab("相似度检测"):
|
| 51 |
with gr.Row():
|
| 52 |
text_input_query = gr.Textbox(lines=10, label="查询文本")
|
|
|
|
| 54 |
text_button_similarity = gr.Button("对比相似度")
|
| 55 |
text_output_similarity = gr.Textbox()
|
| 56 |
|
| 57 |
+
text_button_1.click(extract_handler, inputs=text_input_1, outputs=text_output_1)
|
|
|
|
| 58 |
text_button_similarity.click(similarity_search, inputs=[text_input_query, text_input_doc], outputs=text_output_similarity)
|
| 59 |
|
| 60 |
app.launch(
|
| 61 |
+
# enable share will generate a temporary public link.
|
| 62 |
# share=True,
|
| 63 |
+
# debug=True,
|
| 64 |
+
auth=("qee", "world"),
|
| 65 |
+
auth_message="请登陆"
|
| 66 |
)
|
article_extractor/data_utils.py
DELETED
|
@@ -1,321 +0,0 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
|
| 3 |
-
# 用于
|
| 4 |
-
|
| 5 |
-
import re
|
| 6 |
-
import six
|
| 7 |
-
import unicodedata
|
| 8 |
-
import torch
|
| 9 |
-
import rouge
|
| 10 |
-
import numpy as np
|
| 11 |
-
import random
|
| 12 |
-
# from fengshen.examples.pegasus.pegasus_utils import text_segmentate
|
| 13 |
-
import sys
|
| 14 |
-
|
| 15 |
-
sys.path.append('../../../../')
|
| 16 |
-
|
| 17 |
-
rouge = rouge.Rouge()
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
is_py2 = six.PY2
|
| 21 |
-
|
| 22 |
-
if not is_py2:
|
| 23 |
-
basestring = str
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def _is_chinese_char(cp):
|
| 27 |
-
"""Checks whether CP is the codepoint of a CJK character."""
|
| 28 |
-
# This defines a "chinese character" as anything in the CJK Unicode block:
|
| 29 |
-
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
| 30 |
-
#
|
| 31 |
-
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
| 32 |
-
# despite its name. The modern Korean Hangul alphabet is a different block,
|
| 33 |
-
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
| 34 |
-
# space-separated words, so they are not treated specially and handled
|
| 35 |
-
# like the all of the other languages.
|
| 36 |
-
if ((cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF)
|
| 37 |
-
or (cp >= 0x20000 and cp <= 0x2A6DF)
|
| 38 |
-
or (cp >= 0x2A700 and cp <= 0x2B73F)
|
| 39 |
-
or (cp >= 0x2B740 and cp <= 0x2B81F)
|
| 40 |
-
or (cp >= 0x2B820 and cp <= 0x2CEAF)
|
| 41 |
-
or (cp >= 0xF900 and cp <= 0xFAFF)
|
| 42 |
-
or (cp >= 0x2F800 and cp <= 0x2FA1F)):
|
| 43 |
-
return True
|
| 44 |
-
|
| 45 |
-
return False
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
def _is_whitespace(char):
|
| 49 |
-
"""Checks whether `char` is a whitespace character."""
|
| 50 |
-
# \t, \n, and \r are technically control characters but we treat them
|
| 51 |
-
# as whitespace since they are generally considered as such.
|
| 52 |
-
if char == " " or char == "\t" or char == "\n" or char == "\r":
|
| 53 |
-
return True
|
| 54 |
-
cat = unicodedata.category(char)
|
| 55 |
-
if cat == "Zs":
|
| 56 |
-
return True
|
| 57 |
-
return False
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
def _is_control(char):
|
| 61 |
-
"""Checks whether `char` is a control character."""
|
| 62 |
-
# These are technically control characters but we count them as whitespace
|
| 63 |
-
# characters.
|
| 64 |
-
if char == "\t" or char == "\n" or char == "\r":
|
| 65 |
-
return False
|
| 66 |
-
cat = unicodedata.category(char)
|
| 67 |
-
if cat.startswith("C"):
|
| 68 |
-
return True
|
| 69 |
-
return False
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
def _is_punctuation(char):
|
| 73 |
-
"""Checks whether `char` is a punctuation character."""
|
| 74 |
-
cp = ord(char)
|
| 75 |
-
# We treat all non-letter/number ASCII as punctuation.
|
| 76 |
-
# Characters such as "^", "$", and "`" are not in the Unicode
|
| 77 |
-
# Punctuation class but we treat them as punctuation anyways, for
|
| 78 |
-
# consistency.
|
| 79 |
-
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (
|
| 80 |
-
cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
|
| 81 |
-
return True
|
| 82 |
-
cat = unicodedata.category(char)
|
| 83 |
-
if cat.startswith("P"):
|
| 84 |
-
return True
|
| 85 |
-
return False
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
def is_string(s):
|
| 89 |
-
"""判断是否是字符串
|
| 90 |
-
"""
|
| 91 |
-
return isinstance(s, basestring)
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
def is_stopwords(word, stopwords):
|
| 95 |
-
if word in stopwords:
|
| 96 |
-
return True
|
| 97 |
-
else:
|
| 98 |
-
return False
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
def text_segmentate(text):
|
| 102 |
-
en_seg_pattern = '((?:\\!|\\?|\\.|\\n)+(?:\\s)+)'
|
| 103 |
-
ch_seg_pattern = '((?:?|!|。|\\n)+)'
|
| 104 |
-
try:
|
| 105 |
-
text = re.sub(en_seg_pattern, r'\1[SEP]', text)
|
| 106 |
-
# print("sub text: ", text)
|
| 107 |
-
except Exception as e:
|
| 108 |
-
print("input: ", text)
|
| 109 |
-
raise e
|
| 110 |
-
text = re.sub(ch_seg_pattern, r'\1[SEP]', text)
|
| 111 |
-
# print("sub ch text: ", text)
|
| 112 |
-
text_list = text.split("[SEP]")
|
| 113 |
-
text_list = list(filter(lambda x: len(x) != 0, text_list))
|
| 114 |
-
return text_list
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
def load_stopwords(stopwords_path):
|
| 118 |
-
stopwords_dict = {}
|
| 119 |
-
with open(stopwords_path, "r") as rf:
|
| 120 |
-
for line in rf:
|
| 121 |
-
line = line.strip()
|
| 122 |
-
if line not in stopwords_dict:
|
| 123 |
-
stopwords_dict[line] = 0
|
| 124 |
-
else:
|
| 125 |
-
pass
|
| 126 |
-
return stopwords_dict
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
def text_process(text, max_length):
|
| 130 |
-
"""分割文本
|
| 131 |
-
"""
|
| 132 |
-
texts = text_segmentate(text)
|
| 133 |
-
|
| 134 |
-
result, length = [], 0
|
| 135 |
-
for text in texts:
|
| 136 |
-
if length + len(text) > max_length * 1.3 and len(result) >= 3:
|
| 137 |
-
yield result
|
| 138 |
-
result, length = [], 0
|
| 139 |
-
result.append(text)
|
| 140 |
-
length += len(text)
|
| 141 |
-
if result and len(result) >= 3:
|
| 142 |
-
yield result
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
def text_process_split_long_content(text, max_length):
|
| 146 |
-
"""分割长文本
|
| 147 |
-
"""
|
| 148 |
-
texts = text_segmentate(text)
|
| 149 |
-
|
| 150 |
-
result, sentence_num = "", 0
|
| 151 |
-
for text in texts:
|
| 152 |
-
if len(text) > 500:
|
| 153 |
-
if len(result) > 300 and sentence_num >= 3:
|
| 154 |
-
yield result
|
| 155 |
-
result, sentence_num = "", 0
|
| 156 |
-
else:
|
| 157 |
-
result, sentence_num = "", 0
|
| 158 |
-
continue
|
| 159 |
-
else:
|
| 160 |
-
if len(result) + len(text) > max_length * 1.1 and sentence_num >= 3:
|
| 161 |
-
yield result
|
| 162 |
-
result, sentence_num = "", 0
|
| 163 |
-
result += text
|
| 164 |
-
sentence_num += 1
|
| 165 |
-
|
| 166 |
-
if result and sentence_num >= 3:
|
| 167 |
-
yield result
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
def gather_join(texts, idxs):
|
| 171 |
-
"""取出对应的text,然后拼接起来
|
| 172 |
-
"""
|
| 173 |
-
return ''.join([texts[i] for i in idxs])
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
def gather_join_f1(texts_token, idsx):
|
| 177 |
-
join_texts = []
|
| 178 |
-
for id in idsx:
|
| 179 |
-
join_texts.extend(texts_token[id])
|
| 180 |
-
return join_texts
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
def compute_rouge(source, target):
|
| 184 |
-
"""计算rouge-1、rouge-2、rouge-l
|
| 185 |
-
"""
|
| 186 |
-
source, target = ' '.join(source), ' '.join(target)
|
| 187 |
-
try:
|
| 188 |
-
scores = rouge.get_scores(hyps=source, refs=target)
|
| 189 |
-
return {
|
| 190 |
-
'rouge-1': scores[0]['rouge-1']['f'],
|
| 191 |
-
'rouge-2': scores[0]['rouge-2']['f'],
|
| 192 |
-
'rouge-l': scores[0]['rouge-l']['f'],
|
| 193 |
-
}
|
| 194 |
-
except ValueError:
|
| 195 |
-
return {
|
| 196 |
-
'rouge-1': 0.0,
|
| 197 |
-
'rouge-2': 0.0,
|
| 198 |
-
'rouge-l': 0.0,
|
| 199 |
-
}
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
def remove_stopwords(texts, stopwords_dict):
|
| 203 |
-
for i, text in enumerate(texts):
|
| 204 |
-
texts[i] = list(filter(lambda x: x not in stopwords_dict, text))
|
| 205 |
-
return texts
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
def pseudo_summary_f1(texts,
|
| 209 |
-
stopwords,
|
| 210 |
-
tokenizer,
|
| 211 |
-
max_length,
|
| 212 |
-
rouge_strategy="rouge-l"):
|
| 213 |
-
"""构建伪标签摘要数据集
|
| 214 |
-
"""
|
| 215 |
-
summary_rate = 0.25
|
| 216 |
-
max_length = max_length - 1
|
| 217 |
-
texts_tokens = []
|
| 218 |
-
sentece_idxs_vec = []
|
| 219 |
-
for text in texts:
|
| 220 |
-
if len(texts) == 0:
|
| 221 |
-
continue
|
| 222 |
-
try:
|
| 223 |
-
ids = tokenizer.encode(text.strip())[:-1]
|
| 224 |
-
except ValueError:
|
| 225 |
-
print("error, input : ", text)
|
| 226 |
-
raise ValueError
|
| 227 |
-
sentece_idxs_vec.append(ids)
|
| 228 |
-
tokens = [tokenizer._convert_id_to_token(token) for token in ids]
|
| 229 |
-
texts_tokens.append(tokens)
|
| 230 |
-
|
| 231 |
-
texts_tokens_rm = remove_stopwords(texts_tokens, stopwords)
|
| 232 |
-
source_idxs, target_idxs = list(range(len(texts))), []
|
| 233 |
-
|
| 234 |
-
assert len(texts_tokens) == len(texts)
|
| 235 |
-
# truncate_index = 0
|
| 236 |
-
while True:
|
| 237 |
-
sims = []
|
| 238 |
-
for i in source_idxs:
|
| 239 |
-
new_source_idxs = [j for j in source_idxs if j != i]
|
| 240 |
-
new_target_idxs = sorted(target_idxs + [i])
|
| 241 |
-
new_source = gather_join_f1(texts_tokens_rm, new_source_idxs)
|
| 242 |
-
new_target = gather_join_f1(texts_tokens_rm, new_target_idxs)
|
| 243 |
-
sim = compute_rouge(new_source, new_target)[rouge_strategy]
|
| 244 |
-
sims.append(sim)
|
| 245 |
-
new_idx = source_idxs[np.argmax(sims)]
|
| 246 |
-
del sims
|
| 247 |
-
source_idxs.remove(new_idx)
|
| 248 |
-
target_idxs = sorted(target_idxs + [new_idx])
|
| 249 |
-
source = gather_join(texts, source_idxs)
|
| 250 |
-
target = gather_join(texts, target_idxs)
|
| 251 |
-
try:
|
| 252 |
-
if (len(source_idxs) == 1
|
| 253 |
-
or 1.0 * len(target) / len(source) > summary_rate):
|
| 254 |
-
break
|
| 255 |
-
except ZeroDivisionError as e:
|
| 256 |
-
print(e.meesage)
|
| 257 |
-
print(texts)
|
| 258 |
-
print("source: ", source)
|
| 259 |
-
print("target: ", target)
|
| 260 |
-
|
| 261 |
-
if len(source) < len(target):
|
| 262 |
-
source, target = target, source
|
| 263 |
-
source_idxs, target_idxs = target_idxs, source_idxs
|
| 264 |
-
|
| 265 |
-
return sentece_idxs_vec, source, target, source_idxs, target_idxs
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
def get_input_mask(sentence_id_vec, indexs):
|
| 269 |
-
target_idxs = []
|
| 270 |
-
input_idxs = []
|
| 271 |
-
kMaskSentenceTokenId = 2
|
| 272 |
-
kEosTokenId = 1
|
| 273 |
-
mask_sentence_options_cumulative_prob = [0.9, 0.9, 1, 1]
|
| 274 |
-
for index in indexs:
|
| 275 |
-
target_idxs.extend(sentence_id_vec[index])
|
| 276 |
-
choice = random.uniform(0, 1)
|
| 277 |
-
if choice < mask_sentence_options_cumulative_prob[0]:
|
| 278 |
-
# print("mask index: ", index)
|
| 279 |
-
sentence_id_vec[index] = [kMaskSentenceTokenId]
|
| 280 |
-
elif choice < mask_sentence_options_cumulative_prob[1]:
|
| 281 |
-
# print("replace index: ", index)
|
| 282 |
-
replace_id = random.randint(0, len(sentence_id_vec))
|
| 283 |
-
sentence_id_vec[index] = sentence_id_vec[replace_id]
|
| 284 |
-
elif choice < mask_sentence_options_cumulative_prob[2]:
|
| 285 |
-
pass
|
| 286 |
-
else:
|
| 287 |
-
sentence_id_vec[index] = []
|
| 288 |
-
|
| 289 |
-
target_idxs.append(kEosTokenId)
|
| 290 |
-
# print(sentence_id_vec)
|
| 291 |
-
for index, sentence_id in enumerate(sentence_id_vec):
|
| 292 |
-
# print(index, sentence_id)
|
| 293 |
-
if len(sentence_id) == 0:
|
| 294 |
-
continue
|
| 295 |
-
input_idxs.extend(sentence_id_vec[index])
|
| 296 |
-
|
| 297 |
-
input_idxs.append(kEosTokenId)
|
| 298 |
-
return input_idxs, target_idxs
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int,
|
| 302 |
-
decoder_start_token_id: int):
|
| 303 |
-
"""
|
| 304 |
-
Shift input ids one token to the right.
|
| 305 |
-
"""
|
| 306 |
-
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
| 307 |
-
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
| 308 |
-
shifted_input_ids[:, 0] = decoder_start_token_id
|
| 309 |
-
|
| 310 |
-
if pad_token_id is None:
|
| 311 |
-
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
| 312 |
-
# replace possible -100 values in labels by `pad_token_id`
|
| 313 |
-
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
| 314 |
-
|
| 315 |
-
return shifted_input_ids
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
def padding_to_maxlength(ids, max_length, pad_id):
|
| 319 |
-
cur_len = len(ids)
|
| 320 |
-
len_diff = max_length - cur_len
|
| 321 |
-
return ids + [pad_id] * len_diff, [1] * cur_len + [0] * len_diff
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
article_extractor/tokenizers_pegasus.py
DELETED
|
@@ -1,602 +0,0 @@
|
|
| 1 |
-
import sys
|
| 2 |
-
sys.path.append('../')
|
| 3 |
-
from article_extractor.data_utils import (
|
| 4 |
-
_is_control,
|
| 5 |
-
_is_punctuation,
|
| 6 |
-
_is_whitespace,
|
| 7 |
-
_is_chinese_char)
|
| 8 |
-
from transformers import PreTrainedTokenizer
|
| 9 |
-
from transformers import logging
|
| 10 |
-
from typing import List, Optional, Tuple, Union
|
| 11 |
-
import collections
|
| 12 |
-
import os
|
| 13 |
-
import unicodedata
|
| 14 |
-
import re
|
| 15 |
-
import jieba
|
| 16 |
-
import sys
|
| 17 |
-
|
| 18 |
-
# 提取摘要逻辑实现
|
| 19 |
-
|
| 20 |
-
# sys.path.append("../../../../")
|
| 21 |
-
|
| 22 |
-
jieba.dt.tmp_dir = os.path.expanduser(
|
| 23 |
-
"tmp/")
|
| 24 |
-
# jieba.enable_parallel(8)
|
| 25 |
-
jieba.initialize()
|
| 26 |
-
|
| 27 |
-
logger = logging.get_logger(__name__)
|
| 28 |
-
|
| 29 |
-
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
def load_vocab(vocab_file):
|
| 33 |
-
"""Loads a vocabulary file into a dictionary."""
|
| 34 |
-
vocab = collections.OrderedDict()
|
| 35 |
-
with open(vocab_file, "r", encoding="utf-8") as reader:
|
| 36 |
-
tokens = reader.readlines()
|
| 37 |
-
for index, token in enumerate(tokens):
|
| 38 |
-
token = token.rstrip("\n")
|
| 39 |
-
vocab[token] = index
|
| 40 |
-
return vocab
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
def whitespace_tokenize(text):
|
| 44 |
-
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
| 45 |
-
text = text.strip()
|
| 46 |
-
if not text:
|
| 47 |
-
return []
|
| 48 |
-
tokens = text.split()
|
| 49 |
-
return tokens
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
class PegasusTokenizer(PreTrainedTokenizer):
|
| 53 |
-
# copy from BertTokenizer
|
| 54 |
-
r"""
|
| 55 |
-
Construct a Pegasus tokenizer. Based on WordPiece.
|
| 56 |
-
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
| 57 |
-
this superclass for more information regarding those methods.
|
| 58 |
-
Args:
|
| 59 |
-
vocab_file (`str`):
|
| 60 |
-
File containing the vocabulary.
|
| 61 |
-
do_lower_case (`bool`, *optional*, defaults to `True`):
|
| 62 |
-
Whether or not to lowercase the input when tokenizing.
|
| 63 |
-
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
|
| 64 |
-
Whether or not to do basic tokenization before WordPiece.
|
| 65 |
-
never_split (`Iterable`, *optional*):
|
| 66 |
-
Collection of tokens which will never be split during tokenization. Only has an effect when
|
| 67 |
-
`do_basic_tokenize=True`
|
| 68 |
-
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
| 69 |
-
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
| 70 |
-
token instead.
|
| 71 |
-
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
| 72 |
-
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
| 73 |
-
sequence classification or for a text and a question for question answering. It is also used as the last
|
| 74 |
-
token of a sequence built with special tokens.
|
| 75 |
-
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
| 76 |
-
The token used for padding, for example when batching sequences of different lengths.
|
| 77 |
-
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
| 78 |
-
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
| 79 |
-
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
| 80 |
-
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
| 81 |
-
The token used for masking values. This is the token used when training this model with masked language
|
| 82 |
-
modeling. This is the token which the model will try to predict.
|
| 83 |
-
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
| 84 |
-
Whether or not to tokenize Chinese characters.
|
| 85 |
-
This should likely be deactivated for Japanese (see this
|
| 86 |
-
[issue](https://github.com/huggingface/transformers/issues/328)).
|
| 87 |
-
strip_accents (`bool`, *optional*):
|
| 88 |
-
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
| 89 |
-
value for `lowercase` (as in the original BERT).
|
| 90 |
-
"""
|
| 91 |
-
|
| 92 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
| 93 |
-
model_input_names = ["input_ids", "attention_mask"]
|
| 94 |
-
|
| 95 |
-
# pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
| 96 |
-
# pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
| 97 |
-
# max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
| 98 |
-
|
| 99 |
-
def __init__(self,
|
| 100 |
-
vocab_file,
|
| 101 |
-
do_lower_case=True,
|
| 102 |
-
do_basic_tokenize=True,
|
| 103 |
-
never_split=None,
|
| 104 |
-
pad_token="<pad>",
|
| 105 |
-
eos_token="</s>",
|
| 106 |
-
unk_token="<unk>",
|
| 107 |
-
mask_token="<mask_2>",
|
| 108 |
-
mask_token_sent="<mask_1>",
|
| 109 |
-
additional_special_tokens=None,
|
| 110 |
-
sep_token="[SEP]",
|
| 111 |
-
cls_token="[CLS]",
|
| 112 |
-
tokenize_chinese_chars=True,
|
| 113 |
-
strip_accents=None,
|
| 114 |
-
offset=100,
|
| 115 |
-
pre_tokenizer=lambda x: jieba.cut(x, HMM=False),
|
| 116 |
-
**kwargs):
|
| 117 |
-
self.offset = offset
|
| 118 |
-
|
| 119 |
-
if additional_special_tokens is not None:
|
| 120 |
-
if not isinstance(additional_special_tokens, list):
|
| 121 |
-
raise TypeError(
|
| 122 |
-
f"additional_special_tokens should be of type {type(list)}, \
|
| 123 |
-
but is {type(additional_special_tokens)}"
|
| 124 |
-
)
|
| 125 |
-
|
| 126 |
-
additional_special_tokens_extended = (
|
| 127 |
-
([mask_token_sent] + additional_special_tokens)
|
| 128 |
-
if mask_token_sent not in additional_special_tokens
|
| 129 |
-
and mask_token_sent is not None else additional_special_tokens)
|
| 130 |
-
|
| 131 |
-
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
|
| 132 |
-
additional_special_tokens_extended += [
|
| 133 |
-
f"<unk_{i}>" for i in range(
|
| 134 |
-
len(additional_special_tokens_extended), self.offset - 1)
|
| 135 |
-
]
|
| 136 |
-
|
| 137 |
-
if len(set(additional_special_tokens_extended)) != len(
|
| 138 |
-
additional_special_tokens_extended):
|
| 139 |
-
raise ValueError(
|
| 140 |
-
f"Please make sure that the provided additional_special_tokens \
|
| 141 |
-
do not contain an incorrectly shifted list of <unk_x> tokens. \
|
| 142 |
-
Found {additional_special_tokens_extended}."
|
| 143 |
-
)
|
| 144 |
-
additional_special_tokens = additional_special_tokens_extended
|
| 145 |
-
else:
|
| 146 |
-
additional_special_tokens = [
|
| 147 |
-
mask_token_sent
|
| 148 |
-
] if mask_token_sent is not None else []
|
| 149 |
-
# additional_special_tokens += [f"<unk_{i}>" for i in range(3, self.offset)]
|
| 150 |
-
|
| 151 |
-
# print("additional_special_tokens: ", additional_special_tokens)
|
| 152 |
-
|
| 153 |
-
if not os.path.isfile(vocab_file):
|
| 154 |
-
raise ValueError(
|
| 155 |
-
f"Can't find a vocabulary file at path '{vocab_file}'. \
|
| 156 |
-
To load the vocabulary from a Google pretrained "
|
| 157 |
-
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
-
super().__init__(
|
| 161 |
-
do_lower_case=do_lower_case,
|
| 162 |
-
do_basic_tokenize=do_basic_tokenize,
|
| 163 |
-
never_split=never_split,
|
| 164 |
-
unk_token=unk_token,
|
| 165 |
-
sep_token=sep_token,
|
| 166 |
-
pad_token=pad_token,
|
| 167 |
-
cls_token=cls_token,
|
| 168 |
-
mask_token=mask_token,
|
| 169 |
-
eos_token=eos_token,
|
| 170 |
-
tokenize_chinese_chars=tokenize_chinese_chars,
|
| 171 |
-
additional_special_tokens=additional_special_tokens,
|
| 172 |
-
strip_accents=strip_accents,
|
| 173 |
-
**kwargs,
|
| 174 |
-
)
|
| 175 |
-
|
| 176 |
-
self.pre_tokenizer = pre_tokenizer
|
| 177 |
-
self.mask_token_sent = mask_token_sent
|
| 178 |
-
self.vocab = load_vocab(vocab_file)
|
| 179 |
-
|
| 180 |
-
self.vocab[self.eos_token] = self.vocab.pop("[unused1]")
|
| 181 |
-
# self.vocab[self.eos_token] = self.vocab.pop("[unused2]")
|
| 182 |
-
self.vocab[self.pad_token] = self.vocab.pop("[PAD]")
|
| 183 |
-
self.vocab[self.unk_token] = self.vocab.pop("[UNK]")
|
| 184 |
-
|
| 185 |
-
if self.mask_token_sent is not None:
|
| 186 |
-
self.vocab[self.mask_token] = self.vocab.pop("[unused3]")
|
| 187 |
-
self.vocab[self.mask_token_sent] = self.vocab.pop("[unused2]")
|
| 188 |
-
|
| 189 |
-
self.ids_to_tokens = collections.OrderedDict([
|
| 190 |
-
(ids, tok) for tok, ids in self.vocab.items()
|
| 191 |
-
])
|
| 192 |
-
self.do_basic_tokenize = do_basic_tokenize
|
| 193 |
-
if do_basic_tokenize:
|
| 194 |
-
self.basic_tokenizer = BasicTokenizer(
|
| 195 |
-
do_lower_case=do_lower_case,
|
| 196 |
-
never_split=never_split,
|
| 197 |
-
tokenize_chinese_chars=tokenize_chinese_chars,
|
| 198 |
-
strip_accents=strip_accents,
|
| 199 |
-
)
|
| 200 |
-
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab,
|
| 201 |
-
unk_token=self.unk_token)
|
| 202 |
-
|
| 203 |
-
@property
|
| 204 |
-
def do_lower_case(self):
|
| 205 |
-
return self.basic_tokenizer.do_lower_case
|
| 206 |
-
|
| 207 |
-
@property
|
| 208 |
-
def vocab_size(self):
|
| 209 |
-
return len(self.vocab)
|
| 210 |
-
|
| 211 |
-
def get_vocab(self):
|
| 212 |
-
return dict(self.vocab, **self.added_tokens_encoder)
|
| 213 |
-
|
| 214 |
-
def _tokenize(self, text):
|
| 215 |
-
split_tokens = []
|
| 216 |
-
# print("pegasus_tokenizer: ", text)
|
| 217 |
-
for text in self.pre_tokenizer(text):
|
| 218 |
-
if text in self.vocab:
|
| 219 |
-
split_tokens.append(text)
|
| 220 |
-
else:
|
| 221 |
-
if self.do_basic_tokenize:
|
| 222 |
-
for token in self.basic_tokenizer.tokenize(
|
| 223 |
-
text, never_split=self.all_special_tokens):
|
| 224 |
-
|
| 225 |
-
# If the token is part of the never_split set
|
| 226 |
-
if token in self.basic_tokenizer.never_split:
|
| 227 |
-
split_tokens.append(token)
|
| 228 |
-
else:
|
| 229 |
-
split_tokens += self.wordpiece_tokenizer.tokenize(
|
| 230 |
-
token)
|
| 231 |
-
else:
|
| 232 |
-
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
| 233 |
-
return split_tokens
|
| 234 |
-
|
| 235 |
-
def _convert_token_to_id(self, token):
|
| 236 |
-
"""Converts a token (str) in an id using the vocab."""
|
| 237 |
-
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
| 238 |
-
|
| 239 |
-
def _convert_id_to_token(self, index):
|
| 240 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 241 |
-
return self.ids_to_tokens.get(index, self.unk_token)
|
| 242 |
-
|
| 243 |
-
@staticmethod
|
| 244 |
-
def _cjk_punctuation():
|
| 245 |
-
return u'\uff02\uff03\uff04\uff05\uff06\uff07\uff08\uff09\uff0a\uff0b\uff0c\uff0d\uff0f\uff1a\uff1b\uff1c\uff1d\
|
| 246 |
-
\uff1e\uff20\uff3b\uff3c\uff3d\uff3e\uff3f\uff40\uff5b\uff5c\uff5d\uff5e\uff5f\uff60\uff62\
|
| 247 |
-
\uff63\uff64\u3000\u3001\u3003\u3008\u3009\u300a\u300b\u300c\u300d\u300e\u300f\u3010\u3011\u3014\
|
| 248 |
-
\u3015\u3016\u3017\u3018\u3019\u301a\u301b\u301c\u301d\u301e\u301f\u3030\u303e\u303f\u2013\u2014\
|
| 249 |
-
\u2018\u2019\u201b\u201c\u201d\u201e\u201f\u2026\u2027\ufe4f\ufe51\ufe54\u00b7\uff01\uff1f\uff61\u3002'
|
| 250 |
-
|
| 251 |
-
def convert_ids_to_tokens(
|
| 252 |
-
self,
|
| 253 |
-
ids: Union[int, List[int]],
|
| 254 |
-
skip_special_tokens: bool = False) -> Union[str, List[str]]:
|
| 255 |
-
"""
|
| 256 |
-
Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and
|
| 257 |
-
added tokens.
|
| 258 |
-
Args:
|
| 259 |
-
ids (`int` or `List[int]`):
|
| 260 |
-
The token id (or token ids) to convert to tokens.
|
| 261 |
-
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 262 |
-
Whether or not to remove special tokens in the decoding.
|
| 263 |
-
Returns:
|
| 264 |
-
`str` or `List[str]`: The decoded token(s).
|
| 265 |
-
"""
|
| 266 |
-
if isinstance(ids, int):
|
| 267 |
-
if ids in self.added_tokens_decoder:
|
| 268 |
-
return self.added_tokens_decoder[ids]
|
| 269 |
-
else:
|
| 270 |
-
return self._convert_id_to_token(ids)
|
| 271 |
-
tokens = []
|
| 272 |
-
for index in ids:
|
| 273 |
-
index = int(index)
|
| 274 |
-
if skip_special_tokens and index in self.all_special_ids and index != 2:
|
| 275 |
-
continue
|
| 276 |
-
if index in self.added_tokens_decoder:
|
| 277 |
-
tokens.append(self.added_tokens_decoder[index])
|
| 278 |
-
else:
|
| 279 |
-
tokens.append(self._convert_id_to_token(index))
|
| 280 |
-
return tokens
|
| 281 |
-
|
| 282 |
-
def convert_tokens_to_string(self, tokens):
|
| 283 |
-
"""Converts a sequence of tokens (string) in a single string."""
|
| 284 |
-
# for token in
|
| 285 |
-
# tokens = tokens or self.ids_to_tokens(ids)
|
| 286 |
-
# tokens = [token for token in tokens if not self._is_special(token)]
|
| 287 |
-
|
| 288 |
-
text = ''
|
| 289 |
-
for i, token in enumerate(tokens):
|
| 290 |
-
if token[:2] == '##':
|
| 291 |
-
text += token[2:]
|
| 292 |
-
elif len(token) == 1 and _is_chinese_char(ord(token)):
|
| 293 |
-
text += token
|
| 294 |
-
elif len(token) == 1 and _is_punctuation(token):
|
| 295 |
-
text += token
|
| 296 |
-
text += ' '
|
| 297 |
-
elif i > 0 and _is_chinese_char(ord(text[-1])):
|
| 298 |
-
text += token
|
| 299 |
-
elif tokens == "</s>":
|
| 300 |
-
continue
|
| 301 |
-
else:
|
| 302 |
-
text += ' '
|
| 303 |
-
text += token
|
| 304 |
-
|
| 305 |
-
text = re.sub(' +', ' ', text)
|
| 306 |
-
text = re.sub('\' (re|m|s|t|ve|d|ll) ', '\'\\1 ', text)
|
| 307 |
-
punctuation = re.sub(' +', '', self._cjk_punctuation()).strip() + '+-/={(<['
|
| 308 |
-
punctuation_regex = '|'.join([re.escape(p) for p in punctuation])
|
| 309 |
-
punctuation_regex = '(%s) ' % punctuation_regex
|
| 310 |
-
text = re.sub(punctuation_regex, '\\1', text)
|
| 311 |
-
text = re.sub(r'(\d\.) (\d)', '\\1\\2', text)
|
| 312 |
-
|
| 313 |
-
return text.strip()
|
| 314 |
-
# out_string = " ".join(tokens).replace(" ##", "").strip()
|
| 315 |
-
|
| 316 |
-
def build_inputs_with_special_tokens(
|
| 317 |
-
self,
|
| 318 |
-
token_ids_0: List[int],
|
| 319 |
-
token_ids_1: Optional[List[int]] = None) -> List[int]:
|
| 320 |
-
"""
|
| 321 |
-
Build model inputs from a sequence or a pair of sequences for sequence classification tasks by concatenating
|
| 322 |
-
and adding special tokens. A PEGASUS sequence has the following format, where `X` represents the sequence:
|
| 323 |
-
- single sequence: `X </s>`
|
| 324 |
-
- pair of sequences: `A B </s>` (not intended use)
|
| 325 |
-
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
|
| 326 |
-
separator.
|
| 327 |
-
Args:
|
| 328 |
-
token_ids_0 (`List[int]`):
|
| 329 |
-
List of IDs to which the special tokens will be added.
|
| 330 |
-
token_ids_1 (`List[int]`, *optional*):
|
| 331 |
-
Optional second list of IDs for sequence pairs.
|
| 332 |
-
Returns:
|
| 333 |
-
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
| 334 |
-
"""
|
| 335 |
-
if token_ids_1 is None:
|
| 336 |
-
return token_ids_0 + [self.eos_token_id]
|
| 337 |
-
return token_ids_0 + token_ids_1 + [self.eos_token_id]
|
| 338 |
-
|
| 339 |
-
def _special_token_mask(self, seq):
|
| 340 |
-
all_special_ids = set(
|
| 341 |
-
self.all_special_ids) # call it once instead of inside list comp
|
| 342 |
-
# all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
|
| 343 |
-
|
| 344 |
-
return [1 if x in all_special_ids else 0 for x in seq]
|
| 345 |
-
|
| 346 |
-
def get_special_tokens_mask(
|
| 347 |
-
self,
|
| 348 |
-
token_ids_0: List[int],
|
| 349 |
-
token_ids_1: Optional[List[int]] = None,
|
| 350 |
-
already_has_special_tokens: bool = False) -> List[int]:
|
| 351 |
-
"""
|
| 352 |
-
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 353 |
-
special tokens using the tokenizer `prepare_for_model` method.
|
| 354 |
-
Args:
|
| 355 |
-
token_ids_0 (`List[int]`):
|
| 356 |
-
List of IDs.
|
| 357 |
-
token_ids_1 (`List[int]`, *optional*):
|
| 358 |
-
Optional second list of IDs for sequence pairs.
|
| 359 |
-
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 360 |
-
Whether or not the token list is already formatted with special tokens for the model.
|
| 361 |
-
Returns:
|
| 362 |
-
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 363 |
-
"""
|
| 364 |
-
|
| 365 |
-
if already_has_special_tokens:
|
| 366 |
-
return self._special_token_mask(token_ids_0)
|
| 367 |
-
elif token_ids_1 is None:
|
| 368 |
-
return self._special_token_mask(token_ids_0) + [self.eos_token_id]
|
| 369 |
-
else:
|
| 370 |
-
return self._special_token_mask(token_ids_0 +
|
| 371 |
-
token_ids_1) + [self.eos_token_id]
|
| 372 |
-
|
| 373 |
-
def num_special_tokens_to_add(self, pair=False):
|
| 374 |
-
"""Just EOS"""
|
| 375 |
-
return 1
|
| 376 |
-
|
| 377 |
-
def save_vocabulary(self,
|
| 378 |
-
save_directory: str,
|
| 379 |
-
filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 380 |
-
index = 0
|
| 381 |
-
if os.path.isdir(save_directory):
|
| 382 |
-
vocab_file = os.path.join(
|
| 383 |
-
save_directory,
|
| 384 |
-
(filename_prefix + "-" if filename_prefix else "") +
|
| 385 |
-
VOCAB_FILES_NAMES["vocab_file"])
|
| 386 |
-
else:
|
| 387 |
-
vocab_file = (filename_prefix +
|
| 388 |
-
"-" if filename_prefix else "") + save_directory
|
| 389 |
-
with open(vocab_file, "w", encoding="utf-8") as writer:
|
| 390 |
-
for token, token_index in sorted(self.vocab.items(),
|
| 391 |
-
key=lambda kv: kv[1]):
|
| 392 |
-
if index != token_index:
|
| 393 |
-
logger.warning(
|
| 394 |
-
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
| 395 |
-
" Please check that the vocabulary is not corrupted!")
|
| 396 |
-
index = token_index
|
| 397 |
-
writer.write(token + "\n")
|
| 398 |
-
index += 1
|
| 399 |
-
return (vocab_file, )
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
class BasicTokenizer(object):
|
| 403 |
-
"""
|
| 404 |
-
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
| 405 |
-
Args:
|
| 406 |
-
do_lower_case (`bool`, *optional*, defaults to `True`):
|
| 407 |
-
Whether or not to lowercase the input when tokenizing.
|
| 408 |
-
never_split (`Iterable`, *optional*):
|
| 409 |
-
Collection of tokens which will never be split during tokenization. Only has an effect when
|
| 410 |
-
`do_basic_tokenize=True`
|
| 411 |
-
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
| 412 |
-
Whether or not to tokenize Chinese characters.
|
| 413 |
-
This should likely be deactivated for Japanese (see this
|
| 414 |
-
[issue](https://github.com/huggingface/transformers/issues/328)).
|
| 415 |
-
strip_accents: (`bool`, *optional*):
|
| 416 |
-
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
| 417 |
-
value for `lowercase` (as in the original BERT).
|
| 418 |
-
"""
|
| 419 |
-
|
| 420 |
-
def __init__(self,
|
| 421 |
-
do_lower_case=True,
|
| 422 |
-
never_split=None,
|
| 423 |
-
tokenize_chinese_chars=True,
|
| 424 |
-
strip_accents=None):
|
| 425 |
-
if never_split is None:
|
| 426 |
-
never_split = []
|
| 427 |
-
self.do_lower_case = do_lower_case
|
| 428 |
-
self.never_split = set(never_split)
|
| 429 |
-
self.tokenize_chinese_chars = tokenize_chinese_chars
|
| 430 |
-
self.strip_accents = strip_accents
|
| 431 |
-
|
| 432 |
-
def tokenize(self, text, never_split=None):
|
| 433 |
-
"""
|
| 434 |
-
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see
|
| 435 |
-
WordPieceTokenizer.
|
| 436 |
-
Args:
|
| 437 |
-
never_split (`List[str]`, *optional*)
|
| 438 |
-
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
| 439 |
-
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
| 440 |
-
"""
|
| 441 |
-
# union() returns a new set by concatenating the two sets.
|
| 442 |
-
never_split = self.never_split.union(
|
| 443 |
-
set(never_split)) if never_split else self.never_split
|
| 444 |
-
text = self._clean_text(text)
|
| 445 |
-
|
| 446 |
-
# This was added on November 1st, 2018 for the multilingual and Chinese
|
| 447 |
-
# models. This is also applied to the English models now, but it doesn't
|
| 448 |
-
# matter since the English models were not trained on any Chinese data
|
| 449 |
-
# and generally don't have any Chinese data in them (there are Chinese
|
| 450 |
-
# characters in the vocabulary because Wikipedia does have some Chinese
|
| 451 |
-
# words in the English Wikipedia.).
|
| 452 |
-
if self.tokenize_chinese_chars:
|
| 453 |
-
text = self._tokenize_chinese_chars(text)
|
| 454 |
-
orig_tokens = whitespace_tokenize(text)
|
| 455 |
-
split_tokens = []
|
| 456 |
-
for token in orig_tokens:
|
| 457 |
-
if token not in never_split:
|
| 458 |
-
if self.do_lower_case:
|
| 459 |
-
token = token.lower()
|
| 460 |
-
if self.strip_accents is not False:
|
| 461 |
-
token = self._run_strip_accents(token)
|
| 462 |
-
elif self.strip_accents:
|
| 463 |
-
token = self._run_strip_accents(token)
|
| 464 |
-
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
| 465 |
-
|
| 466 |
-
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
| 467 |
-
return output_tokens
|
| 468 |
-
|
| 469 |
-
def _run_strip_accents(self, text):
|
| 470 |
-
"""Strips accents from a piece of text."""
|
| 471 |
-
text = unicodedata.normalize("NFD", text)
|
| 472 |
-
output = []
|
| 473 |
-
for char in text:
|
| 474 |
-
cat = unicodedata.category(char)
|
| 475 |
-
if cat == "Mn":
|
| 476 |
-
continue
|
| 477 |
-
output.append(char)
|
| 478 |
-
return "".join(output)
|
| 479 |
-
|
| 480 |
-
def _run_split_on_punc(self, text, never_split=None):
|
| 481 |
-
"""Splits punctuation on a piece of text."""
|
| 482 |
-
if never_split is not None and text in never_split:
|
| 483 |
-
return [text]
|
| 484 |
-
chars = list(text)
|
| 485 |
-
i = 0
|
| 486 |
-
start_new_word = True
|
| 487 |
-
output = []
|
| 488 |
-
while i < len(chars):
|
| 489 |
-
char = chars[i]
|
| 490 |
-
if _is_punctuation(char):
|
| 491 |
-
output.append([char])
|
| 492 |
-
start_new_word = True
|
| 493 |
-
else:
|
| 494 |
-
if start_new_word:
|
| 495 |
-
output.append([])
|
| 496 |
-
start_new_word = False
|
| 497 |
-
output[-1].append(char)
|
| 498 |
-
i += 1
|
| 499 |
-
|
| 500 |
-
return ["".join(x) for x in output]
|
| 501 |
-
|
| 502 |
-
def _tokenize_chinese_chars(self, text):
|
| 503 |
-
"""Adds whitespace around any CJK character."""
|
| 504 |
-
output = []
|
| 505 |
-
for char in text:
|
| 506 |
-
cp = ord(char)
|
| 507 |
-
if self._is_chinese_char(cp):
|
| 508 |
-
output.append(" ")
|
| 509 |
-
output.append(char)
|
| 510 |
-
output.append(" ")
|
| 511 |
-
else:
|
| 512 |
-
output.append(char)
|
| 513 |
-
return "".join(output)
|
| 514 |
-
|
| 515 |
-
def _is_chinese_char(self, cp):
|
| 516 |
-
"""Checks whether CP is the codepoint of a CJK character."""
|
| 517 |
-
# This defines a "chinese character" as anything in the CJK Unicode block:
|
| 518 |
-
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
| 519 |
-
#
|
| 520 |
-
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
| 521 |
-
# despite its name. The modern Korean Hangul alphabet is a different block,
|
| 522 |
-
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
| 523 |
-
# space-separated words, so they are not treated specially and handled
|
| 524 |
-
# like the all of the other languages.
|
| 525 |
-
if ((cp >= 0x4E00 and cp <= 0x9FFF)
|
| 526 |
-
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
| 527 |
-
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
| 528 |
-
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
| 529 |
-
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
| 530 |
-
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
| 531 |
-
or (cp >= 0xF900 and cp <= 0xFAFF)
|
| 532 |
-
or (cp >= 0x2F800 and cp <= 0x2FA1F)): #
|
| 533 |
-
return True
|
| 534 |
-
|
| 535 |
-
return False
|
| 536 |
-
|
| 537 |
-
def _clean_text(self, text):
|
| 538 |
-
"""Performs invalid character removal and whitespace cleanup on text."""
|
| 539 |
-
output = []
|
| 540 |
-
for char in text:
|
| 541 |
-
cp = ord(char)
|
| 542 |
-
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
| 543 |
-
continue
|
| 544 |
-
if _is_whitespace(char):
|
| 545 |
-
output.append(" ")
|
| 546 |
-
else:
|
| 547 |
-
output.append(char)
|
| 548 |
-
return "".join(output)
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
class WordpieceTokenizer(object):
|
| 552 |
-
"""Runs WordPiece tokenization."""
|
| 553 |
-
|
| 554 |
-
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
| 555 |
-
self.vocab = vocab
|
| 556 |
-
self.unk_token = unk_token
|
| 557 |
-
self.max_input_chars_per_word = max_input_chars_per_word
|
| 558 |
-
|
| 559 |
-
def tokenize(self, text):
|
| 560 |
-
"""
|
| 561 |
-
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
| 562 |
-
tokenization using the given vocabulary.
|
| 563 |
-
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
| 564 |
-
Args:
|
| 565 |
-
text: A single token or whitespace separated tokens. This should have
|
| 566 |
-
already been passed through *BasicTokenizer*.
|
| 567 |
-
Returns:
|
| 568 |
-
A list of wordpiece tokens.
|
| 569 |
-
"""
|
| 570 |
-
|
| 571 |
-
output_tokens = []
|
| 572 |
-
for token in whitespace_tokenize(text):
|
| 573 |
-
chars = list(token)
|
| 574 |
-
if len(chars) > self.max_input_chars_per_word:
|
| 575 |
-
output_tokens.append(self.unk_token)
|
| 576 |
-
continue
|
| 577 |
-
|
| 578 |
-
is_bad = False
|
| 579 |
-
start = 0
|
| 580 |
-
sub_tokens = []
|
| 581 |
-
while start < len(chars):
|
| 582 |
-
end = len(chars)
|
| 583 |
-
cur_substr = None
|
| 584 |
-
while start < end:
|
| 585 |
-
substr = "".join(chars[start:end])
|
| 586 |
-
if start > 0:
|
| 587 |
-
substr = "##" + substr
|
| 588 |
-
if substr in self.vocab:
|
| 589 |
-
cur_substr = substr
|
| 590 |
-
break
|
| 591 |
-
end -= 1
|
| 592 |
-
if cur_substr is None:
|
| 593 |
-
is_bad = True
|
| 594 |
-
break
|
| 595 |
-
sub_tokens.append(cur_substr)
|
| 596 |
-
start = end
|
| 597 |
-
|
| 598 |
-
if is_bad:
|
| 599 |
-
output_tokens.append(self.unk_token)
|
| 600 |
-
else:
|
| 601 |
-
output_tokens.extend(sub_tokens)
|
| 602 |
-
return output_tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
embed.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
"""
|
|
|
|
| 2 |
This script turn list of string into embeddings.
|
| 3 |
"""
|
| 4 |
from transformers import AutoTokenizer, TFAutoModel
|
|
|
|
| 1 |
"""
|
| 2 |
+
Based on transformers python API.
|
| 3 |
This script turn list of string into embeddings.
|
| 4 |
"""
|
| 5 |
from transformers import AutoTokenizer, TFAutoModel
|
lex_rank.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy, nltk
|
| 2 |
+
nltk.download('punkt')
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
from harvesttext import HarvestText
|
| 6 |
+
from lex_rank_util import degree_centrality_scores
|
| 7 |
+
from sentence_transformers import SentenceTransformer, util
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class LexRank(object):
|
| 11 |
+
def __init__(self):
|
| 12 |
+
self.model = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
|
| 13 |
+
self.ht = HarvestText()
|
| 14 |
+
|
| 15 |
+
def find_central(self, content: str, num=100):
|
| 16 |
+
if self.contains_chinese(content):
|
| 17 |
+
sentences = self.ht.cut_sentences(content)
|
| 18 |
+
else:
|
| 19 |
+
sentences = nltk.sent_tokenize(content)
|
| 20 |
+
embeddings = self.model.encode(sentences, convert_to_tensor=True).cpu()
|
| 21 |
+
|
| 22 |
+
# Compute the pair-wise cosine similarities
|
| 23 |
+
cos_scores = util.cos_sim(embeddings, embeddings).numpy()
|
| 24 |
+
|
| 25 |
+
# Compute the centrality for each sentence
|
| 26 |
+
centrality_scores = degree_centrality_scores(cos_scores, threshold=None)
|
| 27 |
+
|
| 28 |
+
# We argsort so that the first element is the sentence with the highest score
|
| 29 |
+
most_central_sentence_indices = numpy.argsort(-centrality_scores)
|
| 30 |
+
|
| 31 |
+
# num = 100
|
| 32 |
+
res = []
|
| 33 |
+
for index in most_central_sentence_indices:
|
| 34 |
+
if num < 0:
|
| 35 |
+
break
|
| 36 |
+
res.append(sentences[index])
|
| 37 |
+
num -= len(sentences[index])
|
| 38 |
+
return res
|
| 39 |
+
|
| 40 |
+
def contains_chinese(self, content: str):
|
| 41 |
+
for _char in content:
|
| 42 |
+
if '\u4e00' <= _char <= '\u9fa5':
|
| 43 |
+
return True
|
| 44 |
+
return False
|
LexRank.py → lex_rank_util.py
RENAMED
|
File without changes
|
luotuo_util.py
DELETED
|
@@ -1,82 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
class DeviceMap:
|
| 5 |
-
__top_layer: str
|
| 6 |
-
__device_map: dict
|
| 7 |
-
__total_layers: int
|
| 8 |
-
__layers: int
|
| 9 |
-
|
| 10 |
-
def __init__(self, model=None):
|
| 11 |
-
if model == "LLaMA":
|
| 12 |
-
self.__top_layer = "model"
|
| 13 |
-
self.__device_map = {
|
| 14 |
-
"model.embed_tokens": 0,
|
| 15 |
-
"model.norm": 0,
|
| 16 |
-
"lm_head": 0,
|
| 17 |
-
}
|
| 18 |
-
self.__total_layers = 34
|
| 19 |
-
self.__layers = 32
|
| 20 |
-
|
| 21 |
-
elif model == "ChatGLM":
|
| 22 |
-
self.__top_layer = "transformer"
|
| 23 |
-
self.__device_map = {
|
| 24 |
-
"transformer.word_embeddings": 0,
|
| 25 |
-
"transformer.final_layernorm": 0,
|
| 26 |
-
"lm_head": 0,
|
| 27 |
-
}
|
| 28 |
-
self.__total_layers = 30
|
| 29 |
-
self.__layers = 28
|
| 30 |
-
|
| 31 |
-
else:
|
| 32 |
-
self.__top_layer = ""
|
| 33 |
-
self.__device_map = {"": 0}
|
| 34 |
-
self.__total_layers = 0
|
| 35 |
-
self.__layers = 0
|
| 36 |
-
|
| 37 |
-
def get(self):
|
| 38 |
-
top_layer = self.__top_layer
|
| 39 |
-
total_layers = self.__total_layers
|
| 40 |
-
layers = self.__layers
|
| 41 |
-
device_map = self.__device_map
|
| 42 |
-
|
| 43 |
-
world_size = torch.cuda.device_count()
|
| 44 |
-
|
| 45 |
-
free_gpu_mem = []
|
| 46 |
-
for i in range(world_size):
|
| 47 |
-
torch.cuda.set_device(i)
|
| 48 |
-
free_gpu_mem.append(torch.cuda.mem_get_info()[0])
|
| 49 |
-
|
| 50 |
-
min_id = min(enumerate(free_gpu_mem), key=lambda x: x[1])[0]
|
| 51 |
-
max_id = max(enumerate(free_gpu_mem), key=lambda x: x[1])[0]
|
| 52 |
-
|
| 53 |
-
totol_mem = sum(free_gpu_mem)
|
| 54 |
-
|
| 55 |
-
world_layers = {
|
| 56 |
-
id: int(round(total_layers * (mem / totol_mem)))
|
| 57 |
-
for id, mem in enumerate(free_gpu_mem)
|
| 58 |
-
}
|
| 59 |
-
|
| 60 |
-
diff = total_layers - sum(world_layers.values())
|
| 61 |
-
world_layers[max_id if diff > 0 else min_id] += diff
|
| 62 |
-
|
| 63 |
-
cnt = total_layers - layers
|
| 64 |
-
gpu_id = 0
|
| 65 |
-
|
| 66 |
-
for i in range(layers):
|
| 67 |
-
if cnt < world_layers[gpu_id]:
|
| 68 |
-
cnt += 1
|
| 69 |
-
else:
|
| 70 |
-
gpu_id += 1
|
| 71 |
-
cnt = 1
|
| 72 |
-
device_map[f"{top_layer}.layers.{i}"] = gpu_id
|
| 73 |
-
|
| 74 |
-
return device_map
|
| 75 |
-
|
| 76 |
-
def peft(self):
|
| 77 |
-
prefix = "base_model.model"
|
| 78 |
-
device_map = self.get()
|
| 79 |
-
perf_device_map = {"": 0}
|
| 80 |
-
for k, v in device_map.items():
|
| 81 |
-
perf_device_map[f"{prefix}.{k}"] = v
|
| 82 |
-
return perf_device_map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -16,4 +16,5 @@ datasets
|
|
| 16 |
gradio
|
| 17 |
|
| 18 |
sentence-transformers
|
| 19 |
-
harvesttext
|
|
|
|
|
|
| 16 |
gradio
|
| 17 |
|
| 18 |
sentence-transformers
|
| 19 |
+
harvesttext
|
| 20 |
+
nltk
|
tmp/placeholder
DELETED
|
File without changes
|