Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
# Load the models
|
| 5 |
+
model1 = pipeline("sentiment-analysis", model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis")
|
| 6 |
+
model2 = pipeline("sentiment-analysis", model="mr8488/distilroberta-finetuned-financial-news-sentiment-analysis")
|
| 7 |
+
|
| 8 |
+
# Define the function to generate responses
|
| 9 |
+
def analyze_sentiment(input_text):
|
| 10 |
+
result1 = model1(input_text)[0]
|
| 11 |
+
result2 = model2(input_text)[0]
|
| 12 |
+
return {"mrm8488": f"{result1['label']} ({result1['score']:.2f})",
|
| 13 |
+
"mr8488": f"{result2['label']} ({result2['score']:.2f})"}
|
| 14 |
+
|
| 15 |
+
# Create the Gradio interface
|
| 16 |
+
iface = gr.Interface(fn=analyze_sentiment, inputs="text", outputs="text", title="Financial Sentiment Analysis", description="Enter a sentence to analyze its sentiment using two different models.")
|
| 17 |
+
|
| 18 |
+
# Launch the interface
|
| 19 |
+
iface.launch()
|