File size: 1,183 Bytes
6f0237b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from pathlib import Path
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
import gradio as gr

tokenizer = AutoTokenizer.from_pretrained("dslim/distilbert-NER")
model = AutoModelForTokenClassification.from_pretrained("dslim/distilbert-NER")
ner_pipeline = pipeline(
    "ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple"
)

samples_dir = Path("samples")
samples = [
    "basic.txt",
    "single-names-and-initials.txt",
    "false-positive.txt",
    "uncased-names.txt",
]
examples = [(samples_dir / sample).read_text().strip() for sample in samples]
example_labels = [
    sample.replace(".txt", "").replace("-", " ").title() for sample in samples
]


def ner(text):
    output = ner_pipeline(text)
    output = [e for e in output if e["entity_group"] == "PER" and e["score"] > 0.90]
    output = [{**e, "entity_group": "PERSON"} for e in output]
    return {"text": text, "entities": output}


demo = gr.Interface(
    ner,
    gr.Textbox(placeholder="Enter sentence here..."),
    gr.HighlightedText(combine_adjacent=True, show_legend=True),
    examples=examples,
    example_labels=example_labels,
)

demo.launch(debug=True)