Spaces:
Sleeping
Sleeping
| import OstreaCultura as OC | |
| using DataFrames, XLSX, CSV | |
| df = DataFrame(XLSX.readtable("data/Misinformation Library with counterclaims.xlsx", "Climate")) | |
| CSV.write("data/Climate Misinformation Library with counterclaims.csv", df) | |
| claims = OC.DataLoader.pd.read_csv("data/Climate Misinformation Library with counterclaims.csv") | |
| indexname = "ostreacultura-v1" | |
| namespace = "cards-data" | |
| claim = claims.Claims[1] | |
| counterclaim = claims.Counterclaims[1] | |
| threshold = .8 | |
| top_k = 100 # top_k for the initial query | |
| #OC.query_claims(claims.Claims[1], claims.Counterclaims[1], indexname, namespace) | |
| # Write a loop to query all claims, then assign the claim to the top k values | |
| classified = DataFrame() | |
| for i in 1:size(claims)[1] | |
| result = OC.query_claims(string(claims.Claims[i]), string(claims.Counterclaims[i]), indexname, namespace; top_k=100, include_values=false) | |
| if nrow(result) == 0 | |
| println("No results found for claim: ", claims.Claims[i]) | |
| continue | |
| else | |
| result.assigned_claim .= claims.Claims[i] | |
| classified = vcat(classified, result) | |
| end | |
| end | |
| # Write the classified data to a csv file | |
| using CSV | |
| CSV.write("data/cards_top100_results.csv", classified) | |
| ## |