Upload app.py
Browse files
app.py
CHANGED
|
@@ -8,56 +8,14 @@ from sklearn.cluster import KMeans
|
|
| 8 |
import plotly.graph_objects as go
|
| 9 |
import time
|
| 10 |
import logging
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
BACKGROUND_COLOR = 'black'
|
| 15 |
-
COLOR = 'white'
|
| 16 |
-
|
| 17 |
-
def set_page_container_style(
|
| 18 |
-
max_width: int = 10000, max_width_100_percent: bool = False,
|
| 19 |
-
padding_top: int = 1, padding_right: int = 10, padding_left: int = 1, padding_bottom: int = 10,
|
| 20 |
-
color: str = COLOR, background_color: str = BACKGROUND_COLOR,
|
| 21 |
-
):
|
| 22 |
-
if max_width_100_percent:
|
| 23 |
-
max_width_str = f'max-width: 100%;'
|
| 24 |
-
else:
|
| 25 |
-
max_width_str = f'max-width: {max_width}px;'
|
| 26 |
-
st.markdown(
|
| 27 |
-
f'''
|
| 28 |
-
<style>
|
| 29 |
-
.reportview-container .css-1lcbmhc .css-1outpf7 {{
|
| 30 |
-
padding-top: 35px;
|
| 31 |
-
}}
|
| 32 |
-
.reportview-container .main .block-container {{
|
| 33 |
-
{max_width_str}
|
| 34 |
-
padding-top: {padding_top}rem;
|
| 35 |
-
padding-right: {padding_right}rem;
|
| 36 |
-
padding-left: {padding_left}rem;
|
| 37 |
-
padding-bottom: {padding_bottom}rem;
|
| 38 |
-
}}
|
| 39 |
-
.reportview-container .main {{
|
| 40 |
-
color: {color};
|
| 41 |
-
background-color: {background_color};
|
| 42 |
-
}}
|
| 43 |
-
</style>
|
| 44 |
-
''',
|
| 45 |
-
unsafe_allow_html=True,
|
| 46 |
-
)
|
| 47 |
|
| 48 |
# Additional libraries for querying
|
| 49 |
from FlagEmbedding import FlagModel
|
| 50 |
|
| 51 |
# Global variables and dataset loading
|
| 52 |
global dataset_name
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
dataset_name = "somewheresystems/dataclysm-arxiv"
|
| 56 |
-
|
| 57 |
-
set_page_container_style(
|
| 58 |
-
max_width = 1600, max_width_100_percent = True,
|
| 59 |
-
padding_top = 0, padding_right = 10, padding_left = 5, padding_bottom = 10
|
| 60 |
-
)
|
| 61 |
st.session_state.dataclysm_arxiv = load_dataset(dataset_name, split="train")
|
| 62 |
total_samples = len(st.session_state.dataclysm_arxiv)
|
| 63 |
|
|
@@ -125,69 +83,20 @@ def perform_tsne(embeddings):
|
|
| 125 |
|
| 126 |
def perform_clustering(df, tsne_results):
|
| 127 |
start_time = time.time()
|
| 128 |
-
# Perform
|
| 129 |
-
logging.info('Performing
|
| 130 |
# Step 3: Visualization with Plotly
|
| 131 |
-
|
| 132 |
-
df['tsne-3d-
|
| 133 |
-
df['tsne-3d-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
#
|
| 137 |
-
|
| 138 |
-
cluster_labels = hdbscan.fit_predict(df[['tsne-3d-one', 'tsne-3d-two', 'tsne-3d-three']])
|
| 139 |
-
df['cluster'] = cluster_labels
|
| 140 |
end_time = time.time() # End timing
|
| 141 |
-
st.sidebar.text(f'
|
| 142 |
return df
|
| 143 |
|
| 144 |
-
def update_camera_position(fig, df, df_query, result_id, K=10):
|
| 145 |
-
# Focus the camera on the closest result
|
| 146 |
-
top_K_ids = df_query.sort_values(by='proximity', ascending=True).head(K)['id'].tolist()
|
| 147 |
-
top_K_proximity = df_query['proximity'].tolist()
|
| 148 |
-
top_results = df[df['id'].isin(top_K_ids)]
|
| 149 |
-
camera_focus = dict(
|
| 150 |
-
eye=dict(x=top_results.iloc[0]['tsne-3d-one']*0.1, y=top_results.iloc[0]['tsne-3d-two']*0.1, z=top_results.iloc[0]['tsne-3d-three']*0.1)
|
| 151 |
-
)
|
| 152 |
-
# Normalize the proximity values to range between 1 and 10
|
| 153 |
-
normalized_proximity = [10 - (10 * (prox - min(top_K_proximity)) / (max(top_K_proximity) - min(top_K_proximity))) for prox in top_K_proximity]
|
| 154 |
-
# Create a dictionary mapping id to normalized proximity
|
| 155 |
-
id_to_proximity = dict(zip(top_K_ids, normalized_proximity))
|
| 156 |
-
# Set marker sizes based on proximity for top K ids, all other points stay the same
|
| 157 |
-
marker_sizes = [id_to_proximity[id] if id in top_K_ids else 1 for id in df['id']]
|
| 158 |
-
# Store the original colors in a separate column
|
| 159 |
-
df['color'] = df['cluster']
|
| 160 |
-
|
| 161 |
-
fig = go.Figure(data=[go.Scatter3d(
|
| 162 |
-
x=df['tsne-3d-one'],
|
| 163 |
-
y=df['tsne-3d-two'],
|
| 164 |
-
z=df['tsne-3d-three'],
|
| 165 |
-
mode='markers',
|
| 166 |
-
marker=dict(size=marker_sizes, color=df['color'], colorscale='Viridis', opacity=0.8, line_width=0),
|
| 167 |
-
hovertext=df['hovertext'],
|
| 168 |
-
hoverinfo='text',
|
| 169 |
-
)])
|
| 170 |
-
# Set grid opacity to 10%
|
| 171 |
-
fig.update_layout(scene = dict(xaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)'),
|
| 172 |
-
yaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)'),
|
| 173 |
-
zaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)')))
|
| 174 |
-
|
| 175 |
-
# Add lines stemming from the top result to all other points in the top K
|
| 176 |
-
for i in range(0, K): # there are K-1 lines from the top result to the other K-1 points
|
| 177 |
-
fig.add_trace(go.Scatter3d(
|
| 178 |
-
x=[top_results.iloc[0]['tsne-3d-one'], top_results.iloc[i]['tsne-3d-one']],
|
| 179 |
-
y=[top_results.iloc[0]['tsne-3d-two'], top_results.iloc[i]['tsne-3d-two']],
|
| 180 |
-
z=[top_results.iloc[0]['tsne-3d-three'], top_results.iloc[i]['tsne-3d-three']],
|
| 181 |
-
mode='lines',
|
| 182 |
-
line=dict(color='white',width=0.4), # Set line opacity to 50%
|
| 183 |
-
showlegend=False,
|
| 184 |
-
hoverinfo='none',
|
| 185 |
-
))
|
| 186 |
-
fig.update_layout(plot_bgcolor='rgba(0,0,0,0)',
|
| 187 |
-
paper_bgcolor='rgba(0,0,0,0)',
|
| 188 |
-
scene_camera=camera_focus)
|
| 189 |
-
return fig
|
| 190 |
-
|
| 191 |
def main():
|
| 192 |
# Custom CSS
|
| 193 |
custom_css = """
|
|
@@ -203,126 +112,47 @@ def main():
|
|
| 203 |
color: #F8F8F8; /* Set the font color to F8F8F8 */
|
| 204 |
}
|
| 205 |
/* Add your CSS styles here */
|
| 206 |
-
.stPlotlyChart {
|
| 207 |
-
width: 100%;
|
| 208 |
-
height: 100%;
|
| 209 |
-
/* Other styles... */
|
| 210 |
-
}
|
| 211 |
h1 {
|
| 212 |
text-align: center;
|
| 213 |
}
|
| 214 |
h2,h3,h4 {
|
| 215 |
text-align: justify;
|
| 216 |
-
font-size: 8px
|
| 217 |
-
}
|
| 218 |
-
st-emotion-cache-1wmy9hl {
|
| 219 |
-
font-size: 8px;
|
| 220 |
}
|
| 221 |
body {
|
| 222 |
-
|
| 223 |
-
background-color: #202020;
|
| 224 |
}
|
| 225 |
-
|
| 226 |
.stSlider .css-1cpxqw2 {
|
| 227 |
background: #202020;
|
| 228 |
-
color: #fd5137;
|
| 229 |
-
}
|
| 230 |
-
.stSlider .text {
|
| 231 |
-
background: #202020;
|
| 232 |
-
color: #fd5137;
|
| 233 |
}
|
| 234 |
.stButton > button {
|
| 235 |
background-color: #202020;
|
| 236 |
-
width:
|
| 237 |
-
|
| 238 |
-
margin-right: auto;
|
| 239 |
-
display: block;
|
| 240 |
padding: 10px 24px;
|
|
|
|
| 241 |
font-size: 16px;
|
| 242 |
font-weight: bold;
|
| 243 |
-
border: 1px solid #f8f8f8;
|
| 244 |
-
}
|
| 245 |
-
.stButton > button:hover {
|
| 246 |
-
color: #Fd5137
|
| 247 |
-
border: 1px solid #fd5137;
|
| 248 |
-
}
|
| 249 |
-
.stButton > button:active {
|
| 250 |
-
color: #F8F8F8;
|
| 251 |
-
border: 1px solid #fd5137;
|
| 252 |
-
background-color: #fd5137;
|
| 253 |
}
|
| 254 |
.reportview-container .main .block-container {
|
| 255 |
-
padding:
|
| 256 |
background-color: #202020;
|
| 257 |
-
width: 100%; /* Make the plotly graph take up full width */
|
| 258 |
-
}
|
| 259 |
-
.sidebar .sidebar-content {
|
| 260 |
-
background-image: linear-gradient(#202020,#202020);
|
| 261 |
-
color: white;
|
| 262 |
-
size: 0.2em; /* Make the text in the sidebar smaller */
|
| 263 |
-
padding: 0;
|
| 264 |
-
}
|
| 265 |
-
.reportview-container .main .block-container {
|
| 266 |
-
background-color: #000000;
|
| 267 |
-
}
|
| 268 |
-
.stText {
|
| 269 |
-
padding: 0;
|
| 270 |
-
}
|
| 271 |
-
/* Set the main background color to #202020 */
|
| 272 |
-
.appview-container {
|
| 273 |
-
background-color: #000000;
|
| 274 |
-
padding: 0;
|
| 275 |
-
}
|
| 276 |
-
.stVerticalBlockBorderWrapper{
|
| 277 |
-
padding: 0;
|
| 278 |
-
margin-left: 0px;
|
| 279 |
-
}
|
| 280 |
-
.st-emotion-cache-1cypcdb {
|
| 281 |
-
background-color: #202020;
|
| 282 |
-
background-image: none;
|
| 283 |
-
color: #000000;
|
| 284 |
-
padding: 0;
|
| 285 |
-
}
|
| 286 |
-
.stPlotlyChart {
|
| 287 |
-
background-color: #000000;
|
| 288 |
-
background-image: none;
|
| 289 |
-
color: #000000;
|
| 290 |
-
padding: 0;
|
| 291 |
-
}
|
| 292 |
-
.reportview-container .css-1lcbmhc .css-1outpf7 {
|
| 293 |
-
padding-top: 35px;
|
| 294 |
-
}
|
| 295 |
-
.reportview-container .main .block-container {
|
| 296 |
-
max-width: 100%;
|
| 297 |
-
padding-top: 0rem;
|
| 298 |
-
padding-right: 0rem;
|
| 299 |
-
padding-left: 0rem;
|
| 300 |
-
padding-bottom: 10rem;
|
| 301 |
-
}
|
| 302 |
-
.reportview-container .main {
|
| 303 |
-
color: white;
|
| 304 |
-
background-color: black;
|
| 305 |
-
}
|
| 306 |
-
.stHeader {
|
| 307 |
-
color: black;
|
| 308 |
-
background-color: black;
|
| 309 |
}
|
| 310 |
-
|
| 311 |
</style>
|
| 312 |
"""
|
| 313 |
|
| 314 |
# Inject custom CSS with markdown
|
| 315 |
st.markdown(custom_css, unsafe_allow_html=True)
|
| 316 |
-
st.sidebar.title('Spatial Search Engine')
|
| 317 |
st.sidebar.markdown(
|
| 318 |
-
'<
|
| 319 |
unsafe_allow_html=True
|
| 320 |
)
|
|
|
|
| 321 |
|
| 322 |
# Check if data needs to be loaded
|
| 323 |
if 'data_loaded' not in st.session_state or not st.session_state.data_loaded:
|
| 324 |
# User input for number of samples
|
| 325 |
-
num_samples = st.sidebar.slider('Select number of samples', 1000,
|
| 326 |
|
| 327 |
if st.sidebar.button('Initialize'):
|
| 328 |
st.sidebar.text('Initializing data pipeline...')
|
|
@@ -341,6 +171,8 @@ def main():
|
|
| 341 |
print(f"FAISS index for {column_name} added.")
|
| 342 |
|
| 343 |
return dataset
|
|
|
|
|
|
|
| 344 |
|
| 345 |
# Load data and perform t-SNE and clustering
|
| 346 |
df, embeddings = load_data(num_samples)
|
|
@@ -377,21 +209,21 @@ def main():
|
|
| 377 |
marker=dict(
|
| 378 |
size=1,
|
| 379 |
color=df['cluster'],
|
| 380 |
-
colorscale='
|
| 381 |
-
opacity=0.
|
| 382 |
)
|
| 383 |
)])
|
| 384 |
-
# Set grid opacity to 10%
|
| 385 |
-
fig.update_layout(scene = dict(xaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)'),
|
| 386 |
-
yaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)'),
|
| 387 |
-
zaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)')))
|
| 388 |
|
| 389 |
fig.update_layout(
|
| 390 |
-
plot_bgcolor='
|
| 391 |
-
paper_bgcolor='rgba(0,0,0,0)',
|
| 392 |
height=800,
|
| 393 |
margin=dict(l=0, r=0, b=0, t=0),
|
| 394 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
)
|
| 396 |
st.session_state.fig = fig
|
| 397 |
|
|
@@ -404,19 +236,8 @@ def main():
|
|
| 404 |
if 'df' in st.session_state:
|
| 405 |
# Sidebar for querying
|
| 406 |
with st.sidebar:
|
| 407 |
-
st.sidebar.markdown("
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
# Display metadata for the selected article
|
| 411 |
-
selected_row = st.session_state.df[st.session_state.df['id'] == selected_index].iloc[0]
|
| 412 |
-
st.markdown(f"### Title\n{selected_row['title']}", unsafe_allow_html=True)
|
| 413 |
-
st.markdown(f"### Abstract\n{selected_row['abstract']}", unsafe_allow_html=True)
|
| 414 |
-
st.markdown(f"[Read the full paper](https://arxiv.org/abs/{selected_row['id']})", unsafe_allow_html=True)
|
| 415 |
-
st.markdown(f"[Download PDF](https://arxiv.org/pdf/{selected_row['id']})", unsafe_allow_html=True)
|
| 416 |
-
|
| 417 |
-
st.sidebar.markdown("### Find Similar in Latent Space")
|
| 418 |
-
query = st.text_input("", value=selected_row['title'])
|
| 419 |
-
top_k = st.slider("top k", 1, 100, 10)
|
| 420 |
if st.button("Search"):
|
| 421 |
# Define the model
|
| 422 |
print("Initializing model...")
|
|
@@ -427,7 +248,7 @@ def main():
|
|
| 427 |
|
| 428 |
query_embedding = model.encode([query])
|
| 429 |
# Retrieve examples by title similarity (or abstract, depending on your preference)
|
| 430 |
-
scores_title, retrieved_examples_title = st.session_state.dataclysm_title_indexed.get_nearest_examples('title_embedding', query_embedding, k=
|
| 431 |
df_query = pd.DataFrame(retrieved_examples_title)
|
| 432 |
df_query['proximity'] = scores_title
|
| 433 |
df_query = df_query.sort_values(by='proximity', ascending=True)
|
|
@@ -436,17 +257,19 @@ def main():
|
|
| 436 |
# Fix the <a href link> to display properly
|
| 437 |
df_query['URL'] = df_query['id'].apply(lambda x: f'<a href="https://arxiv.org/abs/{x}" target="_blank">Link</a>')
|
| 438 |
st.sidebar.markdown(df_query[['title', 'proximity', 'id']].to_html(escape=False), unsafe_allow_html=True)
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
# Update the camera position and appearance of points
|
| 443 |
-
updated_fig = update_camera_position(st.session_state.fig, st.session_state.df, df_query, top_result_id,top_k)
|
| 444 |
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
|
|
|
|
|
|
|
|
|
| 450 |
|
| 451 |
if __name__ == "__main__":
|
| 452 |
-
main()
|
|
|
|
|
|
|
|
|
| 8 |
import plotly.graph_objects as go
|
| 9 |
import time
|
| 10 |
import logging
|
| 11 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Additional libraries for querying
|
| 14 |
from FlagEmbedding import FlagModel
|
| 15 |
|
| 16 |
# Global variables and dataset loading
|
| 17 |
global dataset_name
|
| 18 |
+
dataset_name = 'somewheresystems/dataclysm-arxiv'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
st.session_state.dataclysm_arxiv = load_dataset(dataset_name, split="train")
|
| 20 |
total_samples = len(st.session_state.dataclysm_arxiv)
|
| 21 |
|
|
|
|
| 83 |
|
| 84 |
def perform_clustering(df, tsne_results):
|
| 85 |
start_time = time.time()
|
| 86 |
+
# Perform KMeans clustering
|
| 87 |
+
logging.info('Performing k-means clustering...')
|
| 88 |
# Step 3: Visualization with Plotly
|
| 89 |
+
df['tsne-3d-one'] = tsne_results[:,0]
|
| 90 |
+
df['tsne-3d-two'] = tsne_results[:,1]
|
| 91 |
+
df['tsne-3d-three'] = tsne_results[:,2]
|
| 92 |
+
|
| 93 |
+
# Perform KMeans clustering
|
| 94 |
+
kmeans = KMeans(n_clusters=16) # Change the number of clusters as needed
|
| 95 |
+
df['cluster'] = kmeans.fit_predict(df[['tsne-3d-one', 'tsne-3d-two', 'tsne-3d-three']])
|
|
|
|
|
|
|
| 96 |
end_time = time.time() # End timing
|
| 97 |
+
st.sidebar.text(f'k-means clustering completed in {end_time - start_time:.3f} seconds')
|
| 98 |
return df
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
def main():
|
| 101 |
# Custom CSS
|
| 102 |
custom_css = """
|
|
|
|
| 112 |
color: #F8F8F8; /* Set the font color to F8F8F8 */
|
| 113 |
}
|
| 114 |
/* Add your CSS styles here */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
h1 {
|
| 116 |
text-align: center;
|
| 117 |
}
|
| 118 |
h2,h3,h4 {
|
| 119 |
text-align: justify;
|
| 120 |
+
font-size: 8px
|
|
|
|
|
|
|
|
|
|
| 121 |
}
|
| 122 |
body {
|
| 123 |
+
text-align: justify;
|
|
|
|
| 124 |
}
|
|
|
|
| 125 |
.stSlider .css-1cpxqw2 {
|
| 126 |
background: #202020;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
}
|
| 128 |
.stButton > button {
|
| 129 |
background-color: #202020;
|
| 130 |
+
width: 100%;
|
| 131 |
+
border: none;
|
|
|
|
|
|
|
| 132 |
padding: 10px 24px;
|
| 133 |
+
border-radius: 5px;
|
| 134 |
font-size: 16px;
|
| 135 |
font-weight: bold;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
}
|
| 137 |
.reportview-container .main .block-container {
|
| 138 |
+
padding: 2rem;
|
| 139 |
background-color: #202020;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
}
|
|
|
|
| 141 |
</style>
|
| 142 |
"""
|
| 143 |
|
| 144 |
# Inject custom CSS with markdown
|
| 145 |
st.markdown(custom_css, unsafe_allow_html=True)
|
|
|
|
| 146 |
st.sidebar.markdown(
|
| 147 |
+
f'<img src="https://www.somewhere.systems/S2-white-logo.png" style="float: bottom-left; width: 32px; height: 32px; opacity: 1.0; animation: fadein 2s;">',
|
| 148 |
unsafe_allow_html=True
|
| 149 |
)
|
| 150 |
+
st.sidebar.title('Spatial Search Engine')
|
| 151 |
|
| 152 |
# Check if data needs to be loaded
|
| 153 |
if 'data_loaded' not in st.session_state or not st.session_state.data_loaded:
|
| 154 |
# User input for number of samples
|
| 155 |
+
num_samples = st.sidebar.slider('Select number of samples', 1000, total_samples, 1000)
|
| 156 |
|
| 157 |
if st.sidebar.button('Initialize'):
|
| 158 |
st.sidebar.text('Initializing data pipeline...')
|
|
|
|
| 171 |
print(f"FAISS index for {column_name} added.")
|
| 172 |
|
| 173 |
return dataset
|
| 174 |
+
|
| 175 |
+
|
| 176 |
|
| 177 |
# Load data and perform t-SNE and clustering
|
| 178 |
df, embeddings = load_data(num_samples)
|
|
|
|
| 209 |
marker=dict(
|
| 210 |
size=1,
|
| 211 |
color=df['cluster'],
|
| 212 |
+
colorscale='Viridis',
|
| 213 |
+
opacity=0.8
|
| 214 |
)
|
| 215 |
)])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
fig.update_layout(
|
| 218 |
+
plot_bgcolor='#202020',
|
|
|
|
| 219 |
height=800,
|
| 220 |
margin=dict(l=0, r=0, b=0, t=0),
|
| 221 |
+
scene=dict(
|
| 222 |
+
xaxis=dict(showbackground=True, backgroundcolor="#000000"),
|
| 223 |
+
yaxis=dict(showbackground=True, backgroundcolor="#000000"),
|
| 224 |
+
zaxis=dict(showbackground=True, backgroundcolor="#000000"),
|
| 225 |
+
),
|
| 226 |
+
scene_camera=dict(eye=dict(x=0.001, y=0.001, z=0.001))
|
| 227 |
)
|
| 228 |
st.session_state.fig = fig
|
| 229 |
|
|
|
|
| 236 |
if 'df' in st.session_state:
|
| 237 |
# Sidebar for querying
|
| 238 |
with st.sidebar:
|
| 239 |
+
st.sidebar.markdown("### Query Embeddings")
|
| 240 |
+
query = st.text_input("Enter your query:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
if st.button("Search"):
|
| 242 |
# Define the model
|
| 243 |
print("Initializing model...")
|
|
|
|
| 248 |
|
| 249 |
query_embedding = model.encode([query])
|
| 250 |
# Retrieve examples by title similarity (or abstract, depending on your preference)
|
| 251 |
+
scores_title, retrieved_examples_title = st.session_state.dataclysm_title_indexed.get_nearest_examples('title_embedding', query_embedding, k=10)
|
| 252 |
df_query = pd.DataFrame(retrieved_examples_title)
|
| 253 |
df_query['proximity'] = scores_title
|
| 254 |
df_query = df_query.sort_values(by='proximity', ascending=True)
|
|
|
|
| 257 |
# Fix the <a href link> to display properly
|
| 258 |
df_query['URL'] = df_query['id'].apply(lambda x: f'<a href="https://arxiv.org/abs/{x}" target="_blank">Link</a>')
|
| 259 |
st.sidebar.markdown(df_query[['title', 'proximity', 'id']].to_html(escape=False), unsafe_allow_html=True)
|
| 260 |
+
st.sidebar.markdown("# Detailed View")
|
| 261 |
+
selected_index = st.sidebar.selectbox("Select Key", st.session_state.df.id)
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
+
# Display metadata for the selected article
|
| 264 |
+
selected_row = st.session_state.df[st.session_state.df['id'] == selected_index].iloc[0]
|
| 265 |
+
st.markdown(f"### Title\n{selected_row['title']}", unsafe_allow_html=True)
|
| 266 |
+
st.markdown(f"### Abstract\n{selected_row['abstract']}", unsafe_allow_html=True)
|
| 267 |
+
st.markdown(f"[Read the full paper](https://arxiv.org/abs/{selected_row['id']})", unsafe_allow_html=True)
|
| 268 |
+
st.markdown(f"[Download PDF](https://arxiv.org/pdf/{selected_row['id']})", unsafe_allow_html=True)
|
| 269 |
+
|
| 270 |
+
|
| 271 |
|
| 272 |
if __name__ == "__main__":
|
| 273 |
+
main()
|
| 274 |
+
|
| 275 |
+
|