Spaces:
Running
Running
Update extensions-builtin/Lora/networks.py
Browse files- extensions-builtin/Lora/networks.py +737 -737
extensions-builtin/Lora/networks.py
CHANGED
|
@@ -1,737 +1,737 @@
|
|
| 1 |
-
from __future__ import annotations
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import logging
|
| 4 |
-
import os
|
| 5 |
-
import re
|
| 6 |
-
|
| 7 |
-
import lora_patches
|
| 8 |
-
import network
|
| 9 |
-
import network_lora
|
| 10 |
-
import network_glora
|
| 11 |
-
import network_hada
|
| 12 |
-
import network_ia3
|
| 13 |
-
import network_lokr
|
| 14 |
-
import network_full
|
| 15 |
-
import network_norm
|
| 16 |
-
import network_oft
|
| 17 |
-
|
| 18 |
-
import torch
|
| 19 |
-
from typing import Union
|
| 20 |
-
|
| 21 |
-
from modules import shared, devices, sd_models, errors, scripts, sd_hijack
|
| 22 |
-
import modules.textual_inversion.textual_inversion as textual_inversion
|
| 23 |
-
import modules.models.sd3.mmdit
|
| 24 |
-
|
| 25 |
-
from lora_logger import logger
|
| 26 |
-
|
| 27 |
-
module_types = [
|
| 28 |
-
network_lora.ModuleTypeLora(),
|
| 29 |
-
network_hada.ModuleTypeHada(),
|
| 30 |
-
network_ia3.ModuleTypeIa3(),
|
| 31 |
-
network_lokr.ModuleTypeLokr(),
|
| 32 |
-
network_full.ModuleTypeFull(),
|
| 33 |
-
network_norm.ModuleTypeNorm(),
|
| 34 |
-
network_glora.ModuleTypeGLora(),
|
| 35 |
-
network_oft.ModuleTypeOFT(),
|
| 36 |
-
]
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
re_digits = re.compile(r"\d+")
|
| 40 |
-
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
|
| 41 |
-
re_compiled = {}
|
| 42 |
-
|
| 43 |
-
suffix_conversion = {
|
| 44 |
-
"attentions": {},
|
| 45 |
-
"resnets": {
|
| 46 |
-
"conv1": "in_layers_2",
|
| 47 |
-
"conv2": "out_layers_3",
|
| 48 |
-
"norm1": "in_layers_0",
|
| 49 |
-
"norm2": "out_layers_0",
|
| 50 |
-
"time_emb_proj": "emb_layers_1",
|
| 51 |
-
"conv_shortcut": "skip_connection",
|
| 52 |
-
}
|
| 53 |
-
}
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
def convert_diffusers_name_to_compvis(key, is_sd2):
|
| 57 |
-
def match(match_list, regex_text):
|
| 58 |
-
regex = re_compiled.get(regex_text)
|
| 59 |
-
if regex is None:
|
| 60 |
-
regex = re.compile(regex_text)
|
| 61 |
-
re_compiled[regex_text] = regex
|
| 62 |
-
|
| 63 |
-
r = re.match(regex, key)
|
| 64 |
-
if not r:
|
| 65 |
-
return False
|
| 66 |
-
|
| 67 |
-
match_list.clear()
|
| 68 |
-
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
|
| 69 |
-
return True
|
| 70 |
-
|
| 71 |
-
m = []
|
| 72 |
-
|
| 73 |
-
if match(m, r"lora_unet_conv_in(.*)"):
|
| 74 |
-
return f'diffusion_model_input_blocks_0_0{m[0]}'
|
| 75 |
-
|
| 76 |
-
if match(m, r"lora_unet_conv_out(.*)"):
|
| 77 |
-
return f'diffusion_model_out_2{m[0]}'
|
| 78 |
-
|
| 79 |
-
if match(m, r"lora_unet_time_embedding_linear_(\d+)(.*)"):
|
| 80 |
-
return f"diffusion_model_time_embed_{m[0] * 2 - 2}{m[1]}"
|
| 81 |
-
|
| 82 |
-
if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
|
| 83 |
-
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
|
| 84 |
-
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
|
| 85 |
-
|
| 86 |
-
if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
|
| 87 |
-
suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
|
| 88 |
-
return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
|
| 89 |
-
|
| 90 |
-
if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
|
| 91 |
-
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
|
| 92 |
-
return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
|
| 93 |
-
|
| 94 |
-
if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
|
| 95 |
-
return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"
|
| 96 |
-
|
| 97 |
-
if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
|
| 98 |
-
return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"
|
| 99 |
-
|
| 100 |
-
if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
|
| 101 |
-
if is_sd2:
|
| 102 |
-
if 'mlp_fc1' in m[1]:
|
| 103 |
-
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
|
| 104 |
-
elif 'mlp_fc2' in m[1]:
|
| 105 |
-
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
|
| 106 |
-
else:
|
| 107 |
-
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
|
| 108 |
-
|
| 109 |
-
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
|
| 110 |
-
|
| 111 |
-
if match(m, r"lora_te2_text_model_encoder_layers_(\d+)_(.+)"):
|
| 112 |
-
if 'mlp_fc1' in m[1]:
|
| 113 |
-
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
|
| 114 |
-
elif 'mlp_fc2' in m[1]:
|
| 115 |
-
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
|
| 116 |
-
else:
|
| 117 |
-
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
|
| 118 |
-
|
| 119 |
-
return key
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
def assign_network_names_to_compvis_modules(sd_model):
|
| 123 |
-
network_layer_mapping = {}
|
| 124 |
-
|
| 125 |
-
if shared.sd_model.is_sdxl:
|
| 126 |
-
for i, embedder in enumerate(shared.sd_model.conditioner.embedders):
|
| 127 |
-
if not hasattr(embedder, 'wrapped'):
|
| 128 |
-
continue
|
| 129 |
-
|
| 130 |
-
for name, module in embedder.wrapped.named_modules():
|
| 131 |
-
network_name = f'{i}_{name.replace(".", "_")}'
|
| 132 |
-
network_layer_mapping[network_name] = module
|
| 133 |
-
module.network_layer_name = network_name
|
| 134 |
-
else:
|
| 135 |
-
cond_stage_model = getattr(shared.sd_model.cond_stage_model, 'wrapped', shared.sd_model.cond_stage_model)
|
| 136 |
-
|
| 137 |
-
for name, module in cond_stage_model.named_modules():
|
| 138 |
-
network_name = name.replace(".", "_")
|
| 139 |
-
network_layer_mapping[network_name] = module
|
| 140 |
-
module.network_layer_name = network_name
|
| 141 |
-
|
| 142 |
-
for name, module in shared.sd_model.model.named_modules():
|
| 143 |
-
network_name = name.replace(".", "_")
|
| 144 |
-
network_layer_mapping[network_name] = module
|
| 145 |
-
module.network_layer_name = network_name
|
| 146 |
-
|
| 147 |
-
sd_model.network_layer_mapping = network_layer_mapping
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
class BundledTIHash(str):
|
| 151 |
-
def __init__(self, hash_str):
|
| 152 |
-
self.hash = hash_str
|
| 153 |
-
|
| 154 |
-
def __str__(self):
|
| 155 |
-
return self.hash if shared.opts.lora_bundled_ti_to_infotext else ''
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
def load_network(name, network_on_disk):
|
| 159 |
-
net = network.Network(name, network_on_disk)
|
| 160 |
-
net.mtime = os.path.getmtime(network_on_disk.filename)
|
| 161 |
-
|
| 162 |
-
sd = sd_models.read_state_dict(network_on_disk.filename)
|
| 163 |
-
|
| 164 |
-
# this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0
|
| 165 |
-
if not hasattr(shared.sd_model, 'network_layer_mapping'):
|
| 166 |
-
assign_network_names_to_compvis_modules(shared.sd_model)
|
| 167 |
-
|
| 168 |
-
keys_failed_to_match = {}
|
| 169 |
-
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.network_layer_mapping
|
| 170 |
-
if hasattr(shared.sd_model, 'diffusers_weight_map'):
|
| 171 |
-
diffusers_weight_map = shared.sd_model.diffusers_weight_map
|
| 172 |
-
elif hasattr(shared.sd_model, 'diffusers_weight_mapping'):
|
| 173 |
-
diffusers_weight_map = {}
|
| 174 |
-
for k, v in shared.sd_model.diffusers_weight_mapping():
|
| 175 |
-
diffusers_weight_map[k] = v
|
| 176 |
-
shared.sd_model.diffusers_weight_map = diffusers_weight_map
|
| 177 |
-
else:
|
| 178 |
-
diffusers_weight_map = None
|
| 179 |
-
|
| 180 |
-
matched_networks = {}
|
| 181 |
-
bundle_embeddings = {}
|
| 182 |
-
|
| 183 |
-
for key_network, weight in sd.items():
|
| 184 |
-
|
| 185 |
-
if diffusers_weight_map:
|
| 186 |
-
key_network_without_network_parts, network_name, network_weight = key_network.rsplit(".", 2)
|
| 187 |
-
network_part = network_name + '.' + network_weight
|
| 188 |
-
else:
|
| 189 |
-
key_network_without_network_parts, _, network_part = key_network.partition(".")
|
| 190 |
-
|
| 191 |
-
if key_network_without_network_parts == "bundle_emb":
|
| 192 |
-
emb_name, vec_name = network_part.split(".", 1)
|
| 193 |
-
emb_dict = bundle_embeddings.get(emb_name, {})
|
| 194 |
-
if vec_name.split('.')[0] == 'string_to_param':
|
| 195 |
-
_, k2 = vec_name.split('.', 1)
|
| 196 |
-
emb_dict['string_to_param'] = {k2: weight}
|
| 197 |
-
else:
|
| 198 |
-
emb_dict[vec_name] = weight
|
| 199 |
-
bundle_embeddings[emb_name] = emb_dict
|
| 200 |
-
|
| 201 |
-
if diffusers_weight_map:
|
| 202 |
-
key = diffusers_weight_map.get(key_network_without_network_parts, key_network_without_network_parts)
|
| 203 |
-
else:
|
| 204 |
-
key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2)
|
| 205 |
-
|
| 206 |
-
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
| 207 |
-
|
| 208 |
-
if sd_module is None:
|
| 209 |
-
m = re_x_proj.match(key)
|
| 210 |
-
if m:
|
| 211 |
-
sd_module = shared.sd_model.network_layer_mapping.get(m.group(1), None)
|
| 212 |
-
|
| 213 |
-
# SDXL loras seem to already have correct compvis keys, so only need to replace "lora_unet" with "diffusion_model"
|
| 214 |
-
if sd_module is None and "lora_unet" in key_network_without_network_parts:
|
| 215 |
-
key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
|
| 216 |
-
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
| 217 |
-
elif sd_module is None and "lora_te1_text_model" in key_network_without_network_parts:
|
| 218 |
-
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
|
| 219 |
-
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
| 220 |
-
|
| 221 |
-
# some SD1 Loras also have correct compvis keys
|
| 222 |
-
if sd_module is None:
|
| 223 |
-
key = key_network_without_network_parts.replace("lora_te1_text_model", "transformer_text_model")
|
| 224 |
-
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
| 225 |
-
|
| 226 |
-
# kohya_ss OFT module
|
| 227 |
-
elif sd_module is None and "oft_unet" in key_network_without_network_parts:
|
| 228 |
-
key = key_network_without_network_parts.replace("oft_unet", "diffusion_model")
|
| 229 |
-
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
| 230 |
-
|
| 231 |
-
# KohakuBlueLeaf OFT module
|
| 232 |
-
if sd_module is None and "oft_diag" in key:
|
| 233 |
-
key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
|
| 234 |
-
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
|
| 235 |
-
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
| 236 |
-
|
| 237 |
-
if sd_module is None:
|
| 238 |
-
keys_failed_to_match[key_network] = key
|
| 239 |
-
continue
|
| 240 |
-
|
| 241 |
-
if key not in matched_networks:
|
| 242 |
-
matched_networks[key] = network.NetworkWeights(network_key=key_network, sd_key=key, w={}, sd_module=sd_module)
|
| 243 |
-
|
| 244 |
-
matched_networks[key].w[network_part] = weight
|
| 245 |
-
|
| 246 |
-
for key, weights in matched_networks.items():
|
| 247 |
-
net_module = None
|
| 248 |
-
for nettype in module_types:
|
| 249 |
-
net_module = nettype.create_module(net, weights)
|
| 250 |
-
if net_module is not None:
|
| 251 |
-
break
|
| 252 |
-
|
| 253 |
-
if net_module is None:
|
| 254 |
-
raise AssertionError(f"Could not find a module type (out of {', '.join([x.__class__.__name__ for x in module_types])}) that would accept those keys: {', '.join(weights.w)}")
|
| 255 |
-
|
| 256 |
-
net.modules[key] = net_module
|
| 257 |
-
|
| 258 |
-
embeddings = {}
|
| 259 |
-
for emb_name, data in bundle_embeddings.items():
|
| 260 |
-
embedding = textual_inversion.create_embedding_from_data(data, emb_name, filename=network_on_disk.filename + "/" + emb_name)
|
| 261 |
-
embedding.loaded = None
|
| 262 |
-
embedding.shorthash = BundledTIHash(name)
|
| 263 |
-
embeddings[emb_name] = embedding
|
| 264 |
-
|
| 265 |
-
net.bundle_embeddings = embeddings
|
| 266 |
-
|
| 267 |
-
if keys_failed_to_match:
|
| 268 |
-
logging.debug(f"Network {network_on_disk.filename} didn't match keys: {keys_failed_to_match}")
|
| 269 |
-
|
| 270 |
-
return net
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
def purge_networks_from_memory():
|
| 274 |
-
while len(networks_in_memory) > shared.opts.lora_in_memory_limit and len(networks_in_memory) > 0:
|
| 275 |
-
name = next(iter(networks_in_memory))
|
| 276 |
-
networks_in_memory.pop(name, None)
|
| 277 |
-
|
| 278 |
-
devices.torch_gc()
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
|
| 282 |
-
emb_db = sd_hijack.model_hijack.embedding_db
|
| 283 |
-
already_loaded = {}
|
| 284 |
-
|
| 285 |
-
for net in loaded_networks:
|
| 286 |
-
if net.name in names:
|
| 287 |
-
already_loaded[net.name] = net
|
| 288 |
-
for emb_name, embedding in net.bundle_embeddings.items():
|
| 289 |
-
if embedding.loaded:
|
| 290 |
-
emb_db.register_embedding_by_name(None, shared.sd_model, emb_name)
|
| 291 |
-
|
| 292 |
-
loaded_networks.clear()
|
| 293 |
-
|
| 294 |
-
unavailable_networks = []
|
| 295 |
-
for name in names:
|
| 296 |
-
if name.lower() in forbidden_network_aliases and available_networks.get(name) is None:
|
| 297 |
-
unavailable_networks.append(name)
|
| 298 |
-
elif available_network_aliases.get(name) is None:
|
| 299 |
-
unavailable_networks.append(name)
|
| 300 |
-
|
| 301 |
-
if unavailable_networks:
|
| 302 |
-
update_available_networks_by_names(unavailable_networks)
|
| 303 |
-
|
| 304 |
-
networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
|
| 305 |
-
if any(x is None for x in networks_on_disk):
|
| 306 |
-
list_available_networks()
|
| 307 |
-
|
| 308 |
-
networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
|
| 309 |
-
|
| 310 |
-
failed_to_load_networks = []
|
| 311 |
-
|
| 312 |
-
for i, (network_on_disk, name) in enumerate(zip(networks_on_disk, names)):
|
| 313 |
-
net = already_loaded.get(name, None)
|
| 314 |
-
|
| 315 |
-
if network_on_disk is not None:
|
| 316 |
-
if net is None:
|
| 317 |
-
net = networks_in_memory.get(name)
|
| 318 |
-
|
| 319 |
-
if net is None or os.path.getmtime(network_on_disk.filename) > net.mtime:
|
| 320 |
-
try:
|
| 321 |
-
net = load_network(name, network_on_disk)
|
| 322 |
-
|
| 323 |
-
networks_in_memory.pop(name, None)
|
| 324 |
-
networks_in_memory[name] = net
|
| 325 |
-
except Exception as e:
|
| 326 |
-
errors.display(e, f"loading network {network_on_disk.filename}")
|
| 327 |
-
continue
|
| 328 |
-
|
| 329 |
-
net.mentioned_name = name
|
| 330 |
-
|
| 331 |
-
network_on_disk.read_hash()
|
| 332 |
-
|
| 333 |
-
if net is None:
|
| 334 |
-
failed_to_load_networks.append(name)
|
| 335 |
-
logging.info(f"Couldn't find network with name {name}")
|
| 336 |
-
continue
|
| 337 |
-
|
| 338 |
-
net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0
|
| 339 |
-
net.unet_multiplier = unet_multipliers[i] if unet_multipliers else 1.0
|
| 340 |
-
net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0
|
| 341 |
-
loaded_networks.append(net)
|
| 342 |
-
|
| 343 |
-
for emb_name, embedding in net.bundle_embeddings.items():
|
| 344 |
-
if embedding.loaded is None and emb_name in emb_db.word_embeddings:
|
| 345 |
-
logger.warning(
|
| 346 |
-
f'Skip bundle embedding: "{emb_name}"'
|
| 347 |
-
' as it was already loaded from embeddings folder'
|
| 348 |
-
)
|
| 349 |
-
continue
|
| 350 |
-
|
| 351 |
-
embedding.loaded = False
|
| 352 |
-
if emb_db.expected_shape == -1 or emb_db.expected_shape == embedding.shape:
|
| 353 |
-
embedding.loaded = True
|
| 354 |
-
emb_db.register_embedding(embedding, shared.sd_model)
|
| 355 |
-
else:
|
| 356 |
-
emb_db.skipped_embeddings[name] = embedding
|
| 357 |
-
|
| 358 |
-
if failed_to_load_networks:
|
| 359 |
-
lora_not_found_message = f'Lora not found: {", ".join(failed_to_load_networks)}'
|
| 360 |
-
sd_hijack.model_hijack.comments.append(lora_not_found_message)
|
| 361 |
-
if shared.opts.lora_not_found_warning_console:
|
| 362 |
-
print(f'\n{lora_not_found_message}\n')
|
| 363 |
-
if shared.opts.lora_not_found_gradio_warning:
|
| 364 |
-
gr.Warning(lora_not_found_message)
|
| 365 |
-
|
| 366 |
-
purge_networks_from_memory()
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
def allowed_layer_without_weight(layer):
|
| 370 |
-
if isinstance(layer, torch.nn.LayerNorm) and not layer.elementwise_affine:
|
| 371 |
-
return True
|
| 372 |
-
|
| 373 |
-
return False
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
def store_weights_backup(weight):
|
| 377 |
-
if weight is None:
|
| 378 |
-
return None
|
| 379 |
-
|
| 380 |
-
return weight.to(devices.cpu, copy=True)
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
def restore_weights_backup(obj, field, weight):
|
| 384 |
-
if weight is None:
|
| 385 |
-
setattr(obj, field, None)
|
| 386 |
-
return
|
| 387 |
-
|
| 388 |
-
getattr(obj, field).copy_(weight)
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
|
| 392 |
-
weights_backup = getattr(self, "network_weights_backup", None)
|
| 393 |
-
bias_backup = getattr(self, "network_bias_backup", None)
|
| 394 |
-
|
| 395 |
-
if weights_backup is None and bias_backup is None:
|
| 396 |
-
return
|
| 397 |
-
|
| 398 |
-
if weights_backup is not None:
|
| 399 |
-
if isinstance(self, torch.nn.MultiheadAttention):
|
| 400 |
-
restore_weights_backup(self, 'in_proj_weight', weights_backup[0])
|
| 401 |
-
restore_weights_backup(self.out_proj, 'weight', weights_backup[1])
|
| 402 |
-
else:
|
| 403 |
-
restore_weights_backup(self, 'weight', weights_backup)
|
| 404 |
-
|
| 405 |
-
if isinstance(self, torch.nn.MultiheadAttention):
|
| 406 |
-
restore_weights_backup(self.out_proj, 'bias', bias_backup)
|
| 407 |
-
else:
|
| 408 |
-
restore_weights_backup(self, 'bias', bias_backup)
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
|
| 412 |
-
"""
|
| 413 |
-
Applies the currently selected set of networks to the weights of torch layer self.
|
| 414 |
-
If weights already have this particular set of networks applied, does nothing.
|
| 415 |
-
If not, restores original weights from backup and alters weights according to networks.
|
| 416 |
-
"""
|
| 417 |
-
|
| 418 |
-
network_layer_name = getattr(self, 'network_layer_name', None)
|
| 419 |
-
if network_layer_name is None:
|
| 420 |
-
return
|
| 421 |
-
|
| 422 |
-
current_names = getattr(self, "network_current_names", ())
|
| 423 |
-
wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks)
|
| 424 |
-
|
| 425 |
-
weights_backup = getattr(self, "network_weights_backup", None)
|
| 426 |
-
if weights_backup is None and wanted_names != ():
|
| 427 |
-
if current_names != () and not allowed_layer_without_weight(self):
|
| 428 |
-
raise RuntimeError(f"{network_layer_name} - no backup weights found and current weights are not unchanged")
|
| 429 |
-
|
| 430 |
-
if isinstance(self, torch.nn.MultiheadAttention):
|
| 431 |
-
weights_backup = (store_weights_backup(self.in_proj_weight), store_weights_backup(self.out_proj.weight))
|
| 432 |
-
else:
|
| 433 |
-
weights_backup = store_weights_backup(self.weight)
|
| 434 |
-
|
| 435 |
-
self.network_weights_backup = weights_backup
|
| 436 |
-
|
| 437 |
-
bias_backup = getattr(self, "network_bias_backup", None)
|
| 438 |
-
if bias_backup is None and wanted_names != ():
|
| 439 |
-
if isinstance(self, torch.nn.MultiheadAttention) and self.out_proj.bias is not None:
|
| 440 |
-
bias_backup = store_weights_backup(self.out_proj.bias)
|
| 441 |
-
elif getattr(self, 'bias', None) is not None:
|
| 442 |
-
bias_backup = store_weights_backup(self.bias)
|
| 443 |
-
else:
|
| 444 |
-
bias_backup = None
|
| 445 |
-
|
| 446 |
-
# Unlike weight which always has value, some modules don't have bias.
|
| 447 |
-
# Only report if bias is not None and current bias are not unchanged.
|
| 448 |
-
if bias_backup is not None and current_names != ():
|
| 449 |
-
raise RuntimeError("no backup bias found and current bias are not unchanged")
|
| 450 |
-
|
| 451 |
-
self.network_bias_backup = bias_backup
|
| 452 |
-
|
| 453 |
-
if current_names != wanted_names:
|
| 454 |
-
network_restore_weights_from_backup(self)
|
| 455 |
-
|
| 456 |
-
for net in loaded_networks:
|
| 457 |
-
module = net.modules.get(network_layer_name, None)
|
| 458 |
-
if module is not None and hasattr(self, 'weight') and not isinstance(module, modules.models.sd3.mmdit.QkvLinear):
|
| 459 |
-
try:
|
| 460 |
-
with torch.no_grad():
|
| 461 |
-
if getattr(self, 'fp16_weight', None) is None:
|
| 462 |
-
weight = self.weight
|
| 463 |
-
bias = self.bias
|
| 464 |
-
else:
|
| 465 |
-
weight = self.fp16_weight.clone().to(self.weight.device)
|
| 466 |
-
bias = getattr(self, 'fp16_bias', None)
|
| 467 |
-
if bias is not None:
|
| 468 |
-
bias = bias.clone().to(self.bias.device)
|
| 469 |
-
updown, ex_bias = module.calc_updown(weight)
|
| 470 |
-
|
| 471 |
-
if len(weight.shape) == 4 and weight.shape[1] == 9:
|
| 472 |
-
# inpainting model. zero pad updown to make channel[1] 4 to 9
|
| 473 |
-
updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5))
|
| 474 |
-
|
| 475 |
-
self.weight.copy_((weight.to(dtype=updown.dtype) + updown).to(dtype=self.weight.dtype))
|
| 476 |
-
if ex_bias is not None and hasattr(self, 'bias'):
|
| 477 |
-
if self.bias is None:
|
| 478 |
-
self.bias = torch.nn.Parameter(ex_bias).to(self.weight.dtype)
|
| 479 |
-
else:
|
| 480 |
-
self.bias.copy_((bias + ex_bias).to(dtype=self.bias.dtype))
|
| 481 |
-
except RuntimeError as e:
|
| 482 |
-
logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
|
| 483 |
-
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
|
| 484 |
-
|
| 485 |
-
continue
|
| 486 |
-
|
| 487 |
-
module_q = net.modules.get(network_layer_name + "_q_proj", None)
|
| 488 |
-
module_k = net.modules.get(network_layer_name + "_k_proj", None)
|
| 489 |
-
module_v = net.modules.get(network_layer_name + "_v_proj", None)
|
| 490 |
-
module_out = net.modules.get(network_layer_name + "_out_proj", None)
|
| 491 |
-
|
| 492 |
-
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
|
| 493 |
-
try:
|
| 494 |
-
with torch.no_grad():
|
| 495 |
-
# Send "real" orig_weight into MHA's lora module
|
| 496 |
-
qw, kw, vw = self.in_proj_weight.chunk(3, 0)
|
| 497 |
-
updown_q, _ = module_q.calc_updown(qw)
|
| 498 |
-
updown_k, _ = module_k.calc_updown(kw)
|
| 499 |
-
updown_v, _ = module_v.calc_updown(vw)
|
| 500 |
-
del qw, kw, vw
|
| 501 |
-
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
|
| 502 |
-
updown_out, ex_bias = module_out.calc_updown(self.out_proj.weight)
|
| 503 |
-
|
| 504 |
-
self.in_proj_weight += updown_qkv
|
| 505 |
-
self.out_proj.weight += updown_out
|
| 506 |
-
if ex_bias is not None:
|
| 507 |
-
if self.out_proj.bias is None:
|
| 508 |
-
self.out_proj.bias = torch.nn.Parameter(ex_bias)
|
| 509 |
-
else:
|
| 510 |
-
self.out_proj.bias += ex_bias
|
| 511 |
-
|
| 512 |
-
except RuntimeError as e:
|
| 513 |
-
logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
|
| 514 |
-
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
|
| 515 |
-
|
| 516 |
-
continue
|
| 517 |
-
|
| 518 |
-
if isinstance(self, modules.models.sd3.mmdit.QkvLinear) and module_q and module_k and module_v:
|
| 519 |
-
try:
|
| 520 |
-
with torch.no_grad():
|
| 521 |
-
# Send "real" orig_weight into MHA's lora module
|
| 522 |
-
qw, kw, vw = self.weight.chunk(3, 0)
|
| 523 |
-
updown_q, _ = module_q.calc_updown(qw)
|
| 524 |
-
updown_k, _ = module_k.calc_updown(kw)
|
| 525 |
-
updown_v, _ = module_v.calc_updown(vw)
|
| 526 |
-
del qw, kw, vw
|
| 527 |
-
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
|
| 528 |
-
self.weight += updown_qkv
|
| 529 |
-
|
| 530 |
-
except RuntimeError as e:
|
| 531 |
-
logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
|
| 532 |
-
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
|
| 533 |
-
|
| 534 |
-
continue
|
| 535 |
-
|
| 536 |
-
if module is None:
|
| 537 |
-
continue
|
| 538 |
-
|
| 539 |
-
logging.debug(f"Network {net.name} layer {network_layer_name}: couldn't find supported operation")
|
| 540 |
-
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
|
| 541 |
-
|
| 542 |
-
self.network_current_names = wanted_names
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
def network_forward(org_module, input, original_forward):
|
| 546 |
-
"""
|
| 547 |
-
Old way of applying Lora by executing operations during layer's forward.
|
| 548 |
-
Stacking many loras this way results in big performance degradation.
|
| 549 |
-
"""
|
| 550 |
-
|
| 551 |
-
if len(loaded_networks) == 0:
|
| 552 |
-
return original_forward(org_module, input)
|
| 553 |
-
|
| 554 |
-
input = devices.cond_cast_unet(input)
|
| 555 |
-
|
| 556 |
-
network_restore_weights_from_backup(org_module)
|
| 557 |
-
network_reset_cached_weight(org_module)
|
| 558 |
-
|
| 559 |
-
y = original_forward(org_module, input)
|
| 560 |
-
|
| 561 |
-
network_layer_name = getattr(org_module, 'network_layer_name', None)
|
| 562 |
-
for lora in loaded_networks:
|
| 563 |
-
module = lora.modules.get(network_layer_name, None)
|
| 564 |
-
if module is None:
|
| 565 |
-
continue
|
| 566 |
-
|
| 567 |
-
y = module.forward(input, y)
|
| 568 |
-
|
| 569 |
-
return y
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
|
| 573 |
-
self.network_current_names = ()
|
| 574 |
-
self.network_weights_backup = None
|
| 575 |
-
self.network_bias_backup = None
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
def network_Linear_forward(self, input):
|
| 579 |
-
if shared.opts.lora_functional:
|
| 580 |
-
return network_forward(self, input, originals.Linear_forward)
|
| 581 |
-
|
| 582 |
-
network_apply_weights(self)
|
| 583 |
-
|
| 584 |
-
return originals.Linear_forward(self, input)
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
def network_Linear_load_state_dict(self, *args, **kwargs):
|
| 588 |
-
network_reset_cached_weight(self)
|
| 589 |
-
|
| 590 |
-
return originals.Linear_load_state_dict(self, *args, **kwargs)
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
def network_Conv2d_forward(self, input):
|
| 594 |
-
if shared.opts.lora_functional:
|
| 595 |
-
return network_forward(self, input, originals.Conv2d_forward)
|
| 596 |
-
|
| 597 |
-
network_apply_weights(self)
|
| 598 |
-
|
| 599 |
-
return originals.Conv2d_forward(self, input)
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
def network_Conv2d_load_state_dict(self, *args, **kwargs):
|
| 603 |
-
network_reset_cached_weight(self)
|
| 604 |
-
|
| 605 |
-
return originals.Conv2d_load_state_dict(self, *args, **kwargs)
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
def network_GroupNorm_forward(self, input):
|
| 609 |
-
if shared.opts.lora_functional:
|
| 610 |
-
return network_forward(self, input, originals.GroupNorm_forward)
|
| 611 |
-
|
| 612 |
-
network_apply_weights(self)
|
| 613 |
-
|
| 614 |
-
return originals.GroupNorm_forward(self, input)
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
def network_GroupNorm_load_state_dict(self, *args, **kwargs):
|
| 618 |
-
network_reset_cached_weight(self)
|
| 619 |
-
|
| 620 |
-
return originals.GroupNorm_load_state_dict(self, *args, **kwargs)
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
def network_LayerNorm_forward(self, input):
|
| 624 |
-
if shared.opts.lora_functional:
|
| 625 |
-
return network_forward(self, input, originals.LayerNorm_forward)
|
| 626 |
-
|
| 627 |
-
network_apply_weights(self)
|
| 628 |
-
|
| 629 |
-
return originals.LayerNorm_forward(self, input)
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
def network_LayerNorm_load_state_dict(self, *args, **kwargs):
|
| 633 |
-
network_reset_cached_weight(self)
|
| 634 |
-
|
| 635 |
-
return originals.LayerNorm_load_state_dict(self, *args, **kwargs)
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
def network_MultiheadAttention_forward(self, *args, **kwargs):
|
| 639 |
-
network_apply_weights(self)
|
| 640 |
-
|
| 641 |
-
return originals.MultiheadAttention_forward(self, *args, **kwargs)
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
def network_MultiheadAttention_load_state_dict(self, *args, **kwargs):
|
| 645 |
-
network_reset_cached_weight(self)
|
| 646 |
-
|
| 647 |
-
return originals.MultiheadAttention_load_state_dict(self, *args, **kwargs)
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
def process_network_files(names: list[str] | None = None):
|
| 651 |
-
candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
|
| 652 |
-
candidates += list(shared.walk_files(shared.cmd_opts.lyco_dir_backcompat, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
|
| 653 |
-
for filename in candidates:
|
| 654 |
-
if os.path.isdir(filename):
|
| 655 |
-
continue
|
| 656 |
-
name = os.path.splitext(os.path.basename(filename))[0]
|
| 657 |
-
# if names is provided, only load networks with names in the list
|
| 658 |
-
if names and name not in names:
|
| 659 |
-
continue
|
| 660 |
-
try:
|
| 661 |
-
entry = network.NetworkOnDisk(name, filename)
|
| 662 |
-
except OSError: # should catch FileNotFoundError and PermissionError etc.
|
| 663 |
-
errors.report(f"Failed to load network {name} from {filename}", exc_info=True)
|
| 664 |
-
continue
|
| 665 |
-
|
| 666 |
-
available_networks[name] = entry
|
| 667 |
-
|
| 668 |
-
if entry.alias in available_network_aliases:
|
| 669 |
-
forbidden_network_aliases[entry.alias.lower()] = 1
|
| 670 |
-
|
| 671 |
-
available_network_aliases[name] = entry
|
| 672 |
-
available_network_aliases[entry.alias] = entry
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
def update_available_networks_by_names(names: list[str]):
|
| 676 |
-
process_network_files(names)
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
def list_available_networks():
|
| 680 |
-
available_networks.clear()
|
| 681 |
-
available_network_aliases.clear()
|
| 682 |
-
forbidden_network_aliases.clear()
|
| 683 |
-
available_network_hash_lookup.clear()
|
| 684 |
-
forbidden_network_aliases.update({"none": 1, "Addams": 1})
|
| 685 |
-
|
| 686 |
-
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
|
| 687 |
-
|
| 688 |
-
process_network_files()
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
def infotext_pasted(infotext, params):
|
| 695 |
-
if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
|
| 696 |
-
return # if the other extension is active, it will handle those fields, no need to do anything
|
| 697 |
-
|
| 698 |
-
added = []
|
| 699 |
-
|
| 700 |
-
for k in params:
|
| 701 |
-
if not k.startswith("AddNet Model "):
|
| 702 |
-
continue
|
| 703 |
-
|
| 704 |
-
num = k[13:]
|
| 705 |
-
|
| 706 |
-
if params.get("AddNet Module " + num) != "LoRA":
|
| 707 |
-
continue
|
| 708 |
-
|
| 709 |
-
name = params.get("AddNet Model " + num)
|
| 710 |
-
if name is None:
|
| 711 |
-
continue
|
| 712 |
-
|
| 713 |
-
m = re_network_name.match(name)
|
| 714 |
-
if m:
|
| 715 |
-
name = m.group(1)
|
| 716 |
-
|
| 717 |
-
multiplier = params.get("AddNet Weight A " + num, "1.0")
|
| 718 |
-
|
| 719 |
-
added.append(f"<lora:{name}:{multiplier}>")
|
| 720 |
-
|
| 721 |
-
if added:
|
| 722 |
-
params["Prompt"] += "\n" + "".join(added)
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
originals: lora_patches.LoraPatches = None
|
| 726 |
-
|
| 727 |
-
extra_network_lora = None
|
| 728 |
-
|
| 729 |
-
available_networks = {}
|
| 730 |
-
available_network_aliases = {}
|
| 731 |
-
loaded_networks = []
|
| 732 |
-
loaded_bundle_embeddings = {}
|
| 733 |
-
networks_in_memory = {}
|
| 734 |
-
available_network_hash_lookup = {}
|
| 735 |
-
forbidden_network_aliases = {}
|
| 736 |
-
|
| 737 |
-
list_available_networks()
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import logging
|
| 4 |
+
import os
|
| 5 |
+
import re
|
| 6 |
+
|
| 7 |
+
import lora_patches
|
| 8 |
+
import network
|
| 9 |
+
import network_lora
|
| 10 |
+
import network_glora
|
| 11 |
+
import network_hada
|
| 12 |
+
import network_ia3
|
| 13 |
+
import network_lokr
|
| 14 |
+
import network_full
|
| 15 |
+
import network_norm
|
| 16 |
+
import network_oft
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
from typing import Union
|
| 20 |
+
|
| 21 |
+
from modules import shared, devices, sd_models, errors, scripts, sd_hijack
|
| 22 |
+
import modules.textual_inversion.textual_inversion as textual_inversion
|
| 23 |
+
import modules.models.sd3.mmdit
|
| 24 |
+
|
| 25 |
+
from lora_logger import logger
|
| 26 |
+
|
| 27 |
+
module_types = [
|
| 28 |
+
network_lora.ModuleTypeLora(),
|
| 29 |
+
network_hada.ModuleTypeHada(),
|
| 30 |
+
network_ia3.ModuleTypeIa3(),
|
| 31 |
+
network_lokr.ModuleTypeLokr(),
|
| 32 |
+
network_full.ModuleTypeFull(),
|
| 33 |
+
network_norm.ModuleTypeNorm(),
|
| 34 |
+
network_glora.ModuleTypeGLora(),
|
| 35 |
+
network_oft.ModuleTypeOFT(),
|
| 36 |
+
]
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
re_digits = re.compile(r"\d+")
|
| 40 |
+
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
|
| 41 |
+
re_compiled = {}
|
| 42 |
+
|
| 43 |
+
suffix_conversion = {
|
| 44 |
+
"attentions": {},
|
| 45 |
+
"resnets": {
|
| 46 |
+
"conv1": "in_layers_2",
|
| 47 |
+
"conv2": "out_layers_3",
|
| 48 |
+
"norm1": "in_layers_0",
|
| 49 |
+
"norm2": "out_layers_0",
|
| 50 |
+
"time_emb_proj": "emb_layers_1",
|
| 51 |
+
"conv_shortcut": "skip_connection",
|
| 52 |
+
}
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def convert_diffusers_name_to_compvis(key, is_sd2):
|
| 57 |
+
def match(match_list, regex_text):
|
| 58 |
+
regex = re_compiled.get(regex_text)
|
| 59 |
+
if regex is None:
|
| 60 |
+
regex = re.compile(regex_text)
|
| 61 |
+
re_compiled[regex_text] = regex
|
| 62 |
+
|
| 63 |
+
r = re.match(regex, key)
|
| 64 |
+
if not r:
|
| 65 |
+
return False
|
| 66 |
+
|
| 67 |
+
match_list.clear()
|
| 68 |
+
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
|
| 69 |
+
return True
|
| 70 |
+
|
| 71 |
+
m = []
|
| 72 |
+
|
| 73 |
+
if match(m, r"lora_unet_conv_in(.*)"):
|
| 74 |
+
return f'diffusion_model_input_blocks_0_0{m[0]}'
|
| 75 |
+
|
| 76 |
+
if match(m, r"lora_unet_conv_out(.*)"):
|
| 77 |
+
return f'diffusion_model_out_2{m[0]}'
|
| 78 |
+
|
| 79 |
+
if match(m, r"lora_unet_time_embedding_linear_(\d+)(.*)"):
|
| 80 |
+
return f"diffusion_model_time_embed_{m[0] * 2 - 2}{m[1]}"
|
| 81 |
+
|
| 82 |
+
if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
|
| 83 |
+
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
|
| 84 |
+
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
|
| 85 |
+
|
| 86 |
+
if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
|
| 87 |
+
suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
|
| 88 |
+
return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
|
| 89 |
+
|
| 90 |
+
if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
|
| 91 |
+
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
|
| 92 |
+
return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
|
| 93 |
+
|
| 94 |
+
if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
|
| 95 |
+
return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"
|
| 96 |
+
|
| 97 |
+
if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
|
| 98 |
+
return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"
|
| 99 |
+
|
| 100 |
+
if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
|
| 101 |
+
if is_sd2:
|
| 102 |
+
if 'mlp_fc1' in m[1]:
|
| 103 |
+
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
|
| 104 |
+
elif 'mlp_fc2' in m[1]:
|
| 105 |
+
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
|
| 106 |
+
else:
|
| 107 |
+
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
|
| 108 |
+
|
| 109 |
+
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
|
| 110 |
+
|
| 111 |
+
if match(m, r"lora_te2_text_model_encoder_layers_(\d+)_(.+)"):
|
| 112 |
+
if 'mlp_fc1' in m[1]:
|
| 113 |
+
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
|
| 114 |
+
elif 'mlp_fc2' in m[1]:
|
| 115 |
+
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
|
| 116 |
+
else:
|
| 117 |
+
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
|
| 118 |
+
|
| 119 |
+
return key
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def assign_network_names_to_compvis_modules(sd_model):
|
| 123 |
+
network_layer_mapping = {}
|
| 124 |
+
|
| 125 |
+
if shared.sd_model.is_sdxl:
|
| 126 |
+
for i, embedder in enumerate(shared.sd_model.conditioner.embedders):
|
| 127 |
+
if not hasattr(embedder, 'wrapped'):
|
| 128 |
+
continue
|
| 129 |
+
|
| 130 |
+
for name, module in embedder.wrapped.named_modules():
|
| 131 |
+
network_name = f'{i}_{name.replace(".", "_")}'
|
| 132 |
+
network_layer_mapping[network_name] = module
|
| 133 |
+
module.network_layer_name = network_name
|
| 134 |
+
else:
|
| 135 |
+
cond_stage_model = getattr(shared.sd_model.cond_stage_model, 'wrapped', shared.sd_model.cond_stage_model)
|
| 136 |
+
|
| 137 |
+
for name, module in cond_stage_model.named_modules():
|
| 138 |
+
network_name = name.replace(".", "_")
|
| 139 |
+
network_layer_mapping[network_name] = module
|
| 140 |
+
module.network_layer_name = network_name
|
| 141 |
+
|
| 142 |
+
for name, module in shared.sd_model.model.named_modules():
|
| 143 |
+
network_name = name.replace(".", "_")
|
| 144 |
+
network_layer_mapping[network_name] = module
|
| 145 |
+
module.network_layer_name = network_name
|
| 146 |
+
|
| 147 |
+
sd_model.network_layer_mapping = network_layer_mapping
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
class BundledTIHash(str):
|
| 151 |
+
def __init__(self, hash_str):
|
| 152 |
+
self.hash = hash_str
|
| 153 |
+
|
| 154 |
+
def __str__(self):
|
| 155 |
+
return self.hash if shared.opts.lora_bundled_ti_to_infotext else ''
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def load_network(name, network_on_disk):
|
| 159 |
+
net = network.Network(name, network_on_disk)
|
| 160 |
+
net.mtime = os.path.getmtime(network_on_disk.filename)
|
| 161 |
+
|
| 162 |
+
sd = sd_models.read_state_dict(network_on_disk.filename)
|
| 163 |
+
|
| 164 |
+
# this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0
|
| 165 |
+
if not hasattr(shared.sd_model, 'network_layer_mapping'):
|
| 166 |
+
assign_network_names_to_compvis_modules(shared.sd_model)
|
| 167 |
+
|
| 168 |
+
keys_failed_to_match = {}
|
| 169 |
+
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.network_layer_mapping
|
| 170 |
+
if hasattr(shared.sd_model, 'diffusers_weight_map'):
|
| 171 |
+
diffusers_weight_map = shared.sd_model.diffusers_weight_map
|
| 172 |
+
elif hasattr(shared.sd_model, 'diffusers_weight_mapping'):
|
| 173 |
+
diffusers_weight_map = {}
|
| 174 |
+
for k, v in shared.sd_model.diffusers_weight_mapping():
|
| 175 |
+
diffusers_weight_map[k] = v
|
| 176 |
+
shared.sd_model.diffusers_weight_map = diffusers_weight_map
|
| 177 |
+
else:
|
| 178 |
+
diffusers_weight_map = None
|
| 179 |
+
|
| 180 |
+
matched_networks = {}
|
| 181 |
+
bundle_embeddings = {}
|
| 182 |
+
|
| 183 |
+
for key_network, weight in sd.items():
|
| 184 |
+
|
| 185 |
+
if diffusers_weight_map:
|
| 186 |
+
key_network_without_network_parts, network_name, network_weight = key_network.rsplit(".", 2)
|
| 187 |
+
network_part = network_name + '.' + network_weight
|
| 188 |
+
else:
|
| 189 |
+
key_network_without_network_parts, _, network_part = key_network.partition(".")
|
| 190 |
+
|
| 191 |
+
if key_network_without_network_parts == "bundle_emb":
|
| 192 |
+
emb_name, vec_name = network_part.split(".", 1)
|
| 193 |
+
emb_dict = bundle_embeddings.get(emb_name, {})
|
| 194 |
+
if vec_name.split('.')[0] == 'string_to_param':
|
| 195 |
+
_, k2 = vec_name.split('.', 1)
|
| 196 |
+
emb_dict['string_to_param'] = {k2: weight}
|
| 197 |
+
else:
|
| 198 |
+
emb_dict[vec_name] = weight
|
| 199 |
+
bundle_embeddings[emb_name] = emb_dict
|
| 200 |
+
|
| 201 |
+
if diffusers_weight_map:
|
| 202 |
+
key = diffusers_weight_map.get(key_network_without_network_parts, key_network_without_network_parts)
|
| 203 |
+
else:
|
| 204 |
+
key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2)
|
| 205 |
+
|
| 206 |
+
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
| 207 |
+
|
| 208 |
+
if sd_module is None:
|
| 209 |
+
m = re_x_proj.match(key)
|
| 210 |
+
if m:
|
| 211 |
+
sd_module = shared.sd_model.network_layer_mapping.get(m.group(1), None)
|
| 212 |
+
|
| 213 |
+
# SDXL loras seem to already have correct compvis keys, so only need to replace "lora_unet" with "diffusion_model"
|
| 214 |
+
if sd_module is None and "lora_unet" in key_network_without_network_parts:
|
| 215 |
+
key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
|
| 216 |
+
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
| 217 |
+
elif sd_module is None and "lora_te1_text_model" in key_network_without_network_parts:
|
| 218 |
+
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
|
| 219 |
+
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
| 220 |
+
|
| 221 |
+
# some SD1 Loras also have correct compvis keys
|
| 222 |
+
if sd_module is None:
|
| 223 |
+
key = key_network_without_network_parts.replace("lora_te1_text_model", "transformer_text_model")
|
| 224 |
+
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
| 225 |
+
|
| 226 |
+
# kohya_ss OFT module
|
| 227 |
+
elif sd_module is None and "oft_unet" in key_network_without_network_parts:
|
| 228 |
+
key = key_network_without_network_parts.replace("oft_unet", "diffusion_model")
|
| 229 |
+
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
| 230 |
+
|
| 231 |
+
# KohakuBlueLeaf OFT module
|
| 232 |
+
if sd_module is None and "oft_diag" in key:
|
| 233 |
+
key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
|
| 234 |
+
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
|
| 235 |
+
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
| 236 |
+
|
| 237 |
+
if sd_module is None:
|
| 238 |
+
keys_failed_to_match[key_network] = key
|
| 239 |
+
continue
|
| 240 |
+
|
| 241 |
+
if key not in matched_networks:
|
| 242 |
+
matched_networks[key] = network.NetworkWeights(network_key=key_network, sd_key=key, w={}, sd_module=sd_module)
|
| 243 |
+
|
| 244 |
+
matched_networks[key].w[network_part] = weight
|
| 245 |
+
|
| 246 |
+
for key, weights in matched_networks.items():
|
| 247 |
+
net_module = None
|
| 248 |
+
for nettype in module_types:
|
| 249 |
+
net_module = nettype.create_module(net, weights)
|
| 250 |
+
if net_module is not None:
|
| 251 |
+
break
|
| 252 |
+
|
| 253 |
+
if net_module is None:
|
| 254 |
+
raise AssertionError(f"Could not find a module type (out of {', '.join([x.__class__.__name__ for x in module_types])}) that would accept those keys: {', '.join(weights.w)}")
|
| 255 |
+
|
| 256 |
+
net.modules[key] = net_module
|
| 257 |
+
|
| 258 |
+
embeddings = {}
|
| 259 |
+
for emb_name, data in bundle_embeddings.items():
|
| 260 |
+
embedding = textual_inversion.create_embedding_from_data(data, emb_name, filename=network_on_disk.filename + "/" + emb_name)
|
| 261 |
+
embedding.loaded = None
|
| 262 |
+
embedding.shorthash = BundledTIHash(name)
|
| 263 |
+
embeddings[emb_name] = embedding
|
| 264 |
+
|
| 265 |
+
net.bundle_embeddings = embeddings
|
| 266 |
+
|
| 267 |
+
if keys_failed_to_match:
|
| 268 |
+
logging.debug(f"Network {network_on_disk.filename} didn't match keys: {keys_failed_to_match}")
|
| 269 |
+
|
| 270 |
+
return net
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
def purge_networks_from_memory():
|
| 274 |
+
while len(networks_in_memory) > shared.opts.lora_in_memory_limit and len(networks_in_memory) > 0:
|
| 275 |
+
name = next(iter(networks_in_memory))
|
| 276 |
+
networks_in_memory.pop(name, None)
|
| 277 |
+
|
| 278 |
+
devices.torch_gc()
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
|
| 282 |
+
emb_db = sd_hijack.model_hijack.embedding_db
|
| 283 |
+
already_loaded = {}
|
| 284 |
+
|
| 285 |
+
for net in loaded_networks:
|
| 286 |
+
if net.name in names:
|
| 287 |
+
already_loaded[net.name] = net
|
| 288 |
+
for emb_name, embedding in net.bundle_embeddings.items():
|
| 289 |
+
if embedding.loaded:
|
| 290 |
+
emb_db.register_embedding_by_name(None, shared.sd_model, emb_name)
|
| 291 |
+
|
| 292 |
+
loaded_networks.clear()
|
| 293 |
+
|
| 294 |
+
unavailable_networks = []
|
| 295 |
+
for name in names:
|
| 296 |
+
if name.lower() in forbidden_network_aliases and available_networks.get(name) is None:
|
| 297 |
+
unavailable_networks.append(name)
|
| 298 |
+
elif available_network_aliases.get(name) is None:
|
| 299 |
+
unavailable_networks.append(name)
|
| 300 |
+
|
| 301 |
+
if unavailable_networks:
|
| 302 |
+
update_available_networks_by_names(unavailable_networks)
|
| 303 |
+
|
| 304 |
+
networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
|
| 305 |
+
if any(x is None for x in networks_on_disk):
|
| 306 |
+
list_available_networks()
|
| 307 |
+
|
| 308 |
+
networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
|
| 309 |
+
|
| 310 |
+
failed_to_load_networks = []
|
| 311 |
+
|
| 312 |
+
for i, (network_on_disk, name) in enumerate(zip(networks_on_disk, names)):
|
| 313 |
+
net = already_loaded.get(name, None)
|
| 314 |
+
|
| 315 |
+
if network_on_disk is not None:
|
| 316 |
+
if net is None:
|
| 317 |
+
net = networks_in_memory.get(name)
|
| 318 |
+
|
| 319 |
+
if net is None or os.path.getmtime(network_on_disk.filename) > net.mtime:
|
| 320 |
+
try:
|
| 321 |
+
net = load_network(name, network_on_disk)
|
| 322 |
+
|
| 323 |
+
networks_in_memory.pop(name, None)
|
| 324 |
+
networks_in_memory[name] = net
|
| 325 |
+
except Exception as e:
|
| 326 |
+
errors.display(e, f"loading network {network_on_disk.filename}")
|
| 327 |
+
continue
|
| 328 |
+
|
| 329 |
+
net.mentioned_name = name
|
| 330 |
+
|
| 331 |
+
network_on_disk.read_hash()
|
| 332 |
+
|
| 333 |
+
if net is None:
|
| 334 |
+
failed_to_load_networks.append(name)
|
| 335 |
+
logging.info(f"Couldn't find network with name {name}")
|
| 336 |
+
continue
|
| 337 |
+
|
| 338 |
+
net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0
|
| 339 |
+
net.unet_multiplier = unet_multipliers[i] if unet_multipliers else 1.0
|
| 340 |
+
net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0
|
| 341 |
+
loaded_networks.append(net)
|
| 342 |
+
|
| 343 |
+
for emb_name, embedding in net.bundle_embeddings.items():
|
| 344 |
+
if embedding.loaded is None and emb_name in emb_db.word_embeddings:
|
| 345 |
+
logger.warning(
|
| 346 |
+
f'Skip bundle embedding: "{emb_name}"'
|
| 347 |
+
' as it was already loaded from embeddings folder'
|
| 348 |
+
)
|
| 349 |
+
continue
|
| 350 |
+
|
| 351 |
+
embedding.loaded = False
|
| 352 |
+
if emb_db.expected_shape == -1 or emb_db.expected_shape == embedding.shape:
|
| 353 |
+
embedding.loaded = True
|
| 354 |
+
emb_db.register_embedding(embedding, shared.sd_model)
|
| 355 |
+
else:
|
| 356 |
+
emb_db.skipped_embeddings[name] = embedding
|
| 357 |
+
|
| 358 |
+
if failed_to_load_networks:
|
| 359 |
+
lora_not_found_message = f'Lora not found: {", ".join(failed_to_load_networks)}'
|
| 360 |
+
sd_hijack.model_hijack.comments.append(lora_not_found_message)
|
| 361 |
+
if shared.opts.lora_not_found_warning_console:
|
| 362 |
+
print(f'\n{lora_not_found_message}\n')
|
| 363 |
+
if shared.opts.lora_not_found_gradio_warning:
|
| 364 |
+
gr.Warning(lora_not_found_message)
|
| 365 |
+
|
| 366 |
+
purge_networks_from_memory()
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
def allowed_layer_without_weight(layer):
|
| 370 |
+
if isinstance(layer, torch.nn.LayerNorm) and not layer.elementwise_affine:
|
| 371 |
+
return True
|
| 372 |
+
|
| 373 |
+
return False
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
def store_weights_backup(weight):
|
| 377 |
+
if weight is None:
|
| 378 |
+
return None
|
| 379 |
+
|
| 380 |
+
return weight.to(devices.cpu, copy=True)
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
def restore_weights_backup(obj, field, weight):
|
| 384 |
+
if weight is None:
|
| 385 |
+
setattr(obj, field, None)
|
| 386 |
+
return
|
| 387 |
+
|
| 388 |
+
getattr(obj, field).copy_(weight)
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
|
| 392 |
+
weights_backup = getattr(self, "network_weights_backup", None)
|
| 393 |
+
bias_backup = getattr(self, "network_bias_backup", None)
|
| 394 |
+
|
| 395 |
+
if weights_backup is None and bias_backup is None:
|
| 396 |
+
return
|
| 397 |
+
|
| 398 |
+
if weights_backup is not None:
|
| 399 |
+
if isinstance(self, torch.nn.MultiheadAttention):
|
| 400 |
+
restore_weights_backup(self, 'in_proj_weight', weights_backup[0])
|
| 401 |
+
restore_weights_backup(self.out_proj, 'weight', weights_backup[1])
|
| 402 |
+
else:
|
| 403 |
+
restore_weights_backup(self, 'weight', weights_backup)
|
| 404 |
+
|
| 405 |
+
if isinstance(self, torch.nn.MultiheadAttention):
|
| 406 |
+
restore_weights_backup(self.out_proj, 'bias', bias_backup)
|
| 407 |
+
else:
|
| 408 |
+
restore_weights_backup(self, 'bias', bias_backup)
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
|
| 412 |
+
"""
|
| 413 |
+
Applies the currently selected set of networks to the weights of torch layer self.
|
| 414 |
+
If weights already have this particular set of networks applied, does nothing.
|
| 415 |
+
If not, restores original weights from backup and alters weights according to networks.
|
| 416 |
+
"""
|
| 417 |
+
|
| 418 |
+
network_layer_name = getattr(self, 'network_layer_name', None)
|
| 419 |
+
if network_layer_name is None:
|
| 420 |
+
return
|
| 421 |
+
|
| 422 |
+
current_names = getattr(self, "network_current_names", ())
|
| 423 |
+
wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks)
|
| 424 |
+
|
| 425 |
+
weights_backup = getattr(self, "network_weights_backup", None)
|
| 426 |
+
if weights_backup is None and wanted_names != ():
|
| 427 |
+
if current_names != () and not allowed_layer_without_weight(self):
|
| 428 |
+
raise RuntimeError(f"{network_layer_name} - no backup weights found and current weights are not unchanged")
|
| 429 |
+
|
| 430 |
+
if isinstance(self, torch.nn.MultiheadAttention):
|
| 431 |
+
weights_backup = (store_weights_backup(self.in_proj_weight), store_weights_backup(self.out_proj.weight))
|
| 432 |
+
else:
|
| 433 |
+
weights_backup = store_weights_backup(self.weight)
|
| 434 |
+
|
| 435 |
+
self.network_weights_backup = weights_backup
|
| 436 |
+
|
| 437 |
+
bias_backup = getattr(self, "network_bias_backup", None)
|
| 438 |
+
if bias_backup is None and wanted_names != ():
|
| 439 |
+
if isinstance(self, torch.nn.MultiheadAttention) and self.out_proj.bias is not None:
|
| 440 |
+
bias_backup = store_weights_backup(self.out_proj.bias)
|
| 441 |
+
elif getattr(self, 'bias', None) is not None:
|
| 442 |
+
bias_backup = store_weights_backup(self.bias)
|
| 443 |
+
else:
|
| 444 |
+
bias_backup = None
|
| 445 |
+
|
| 446 |
+
# Unlike weight which always has value, some modules don't have bias.
|
| 447 |
+
# Only report if bias is not None and current bias are not unchanged.
|
| 448 |
+
if bias_backup is not None and current_names != ():
|
| 449 |
+
raise RuntimeError("no backup bias found and current bias are not unchanged")
|
| 450 |
+
|
| 451 |
+
self.network_bias_backup = bias_backup
|
| 452 |
+
|
| 453 |
+
if current_names != wanted_names:
|
| 454 |
+
network_restore_weights_from_backup(self)
|
| 455 |
+
|
| 456 |
+
for net in loaded_networks:
|
| 457 |
+
module = net.modules.get(network_layer_name, None)
|
| 458 |
+
if module is not None and hasattr(self, 'weight') and not isinstance(module, modules.models.sd3.mmdit.QkvLinear):
|
| 459 |
+
try:
|
| 460 |
+
with torch.no_grad():
|
| 461 |
+
if getattr(self, 'fp16_weight', None) is None:
|
| 462 |
+
weight = self.weight
|
| 463 |
+
bias = self.bias
|
| 464 |
+
else:
|
| 465 |
+
weight = self.fp16_weight.clone().to(self.weight.device)
|
| 466 |
+
bias = getattr(self, 'fp16_bias', None)
|
| 467 |
+
if bias is not None:
|
| 468 |
+
bias = bias.clone().to(self.bias.device)
|
| 469 |
+
updown, ex_bias = module.calc_updown(weight)
|
| 470 |
+
|
| 471 |
+
if len(weight.shape) == 4 and weight.shape[1] == 9:
|
| 472 |
+
# inpainting model. zero pad updown to make channel[1] 4 to 9
|
| 473 |
+
updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5))
|
| 474 |
+
|
| 475 |
+
self.weight.copy_((weight.to(dtype=updown.dtype) + updown).to(dtype=self.weight.dtype))
|
| 476 |
+
if ex_bias is not None and hasattr(self, 'bias'):
|
| 477 |
+
if self.bias is None:
|
| 478 |
+
self.bias = torch.nn.Parameter(ex_bias).to(self.weight.dtype)
|
| 479 |
+
else:
|
| 480 |
+
self.bias.copy_((bias + ex_bias).to(dtype=self.bias.dtype))
|
| 481 |
+
except RuntimeError as e:
|
| 482 |
+
logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
|
| 483 |
+
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
|
| 484 |
+
|
| 485 |
+
continue
|
| 486 |
+
|
| 487 |
+
module_q = net.modules.get(network_layer_name + "_q_proj", None)
|
| 488 |
+
module_k = net.modules.get(network_layer_name + "_k_proj", None)
|
| 489 |
+
module_v = net.modules.get(network_layer_name + "_v_proj", None)
|
| 490 |
+
module_out = net.modules.get(network_layer_name + "_out_proj", None)
|
| 491 |
+
|
| 492 |
+
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
|
| 493 |
+
try:
|
| 494 |
+
with torch.no_grad():
|
| 495 |
+
# Send "real" orig_weight into MHA's lora module
|
| 496 |
+
qw, kw, vw = self.in_proj_weight.chunk(3, 0)
|
| 497 |
+
updown_q, _ = module_q.calc_updown(qw)
|
| 498 |
+
updown_k, _ = module_k.calc_updown(kw)
|
| 499 |
+
updown_v, _ = module_v.calc_updown(vw)
|
| 500 |
+
del qw, kw, vw
|
| 501 |
+
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
|
| 502 |
+
updown_out, ex_bias = module_out.calc_updown(self.out_proj.weight)
|
| 503 |
+
|
| 504 |
+
self.in_proj_weight += updown_qkv
|
| 505 |
+
self.out_proj.weight += updown_out
|
| 506 |
+
if ex_bias is not None:
|
| 507 |
+
if self.out_proj.bias is None:
|
| 508 |
+
self.out_proj.bias = torch.nn.Parameter(ex_bias)
|
| 509 |
+
else:
|
| 510 |
+
self.out_proj.bias += ex_bias
|
| 511 |
+
|
| 512 |
+
except RuntimeError as e:
|
| 513 |
+
logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
|
| 514 |
+
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
|
| 515 |
+
|
| 516 |
+
continue
|
| 517 |
+
|
| 518 |
+
if isinstance(self, modules.models.sd3.mmdit.QkvLinear) and module_q and module_k and module_v:
|
| 519 |
+
try:
|
| 520 |
+
with torch.no_grad():
|
| 521 |
+
# Send "real" orig_weight into MHA's lora module
|
| 522 |
+
qw, kw, vw = self.weight.chunk(3, 0)
|
| 523 |
+
updown_q, _ = module_q.calc_updown(qw)
|
| 524 |
+
updown_k, _ = module_k.calc_updown(kw)
|
| 525 |
+
updown_v, _ = module_v.calc_updown(vw)
|
| 526 |
+
del qw, kw, vw
|
| 527 |
+
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
|
| 528 |
+
self.weight += updown_qkv
|
| 529 |
+
|
| 530 |
+
except RuntimeError as e:
|
| 531 |
+
logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
|
| 532 |
+
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
|
| 533 |
+
|
| 534 |
+
continue
|
| 535 |
+
|
| 536 |
+
if module is None:
|
| 537 |
+
continue
|
| 538 |
+
|
| 539 |
+
logging.debug(f"Network {net.name} layer {network_layer_name}: couldn't find supported operation")
|
| 540 |
+
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
|
| 541 |
+
|
| 542 |
+
self.network_current_names = wanted_names
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
def network_forward(org_module, input, original_forward):
|
| 546 |
+
"""
|
| 547 |
+
Old way of applying Lora by executing operations during layer's forward.
|
| 548 |
+
Stacking many loras this way results in big performance degradation.
|
| 549 |
+
"""
|
| 550 |
+
|
| 551 |
+
if len(loaded_networks) == 0:
|
| 552 |
+
return original_forward(org_module, input)
|
| 553 |
+
|
| 554 |
+
input = devices.cond_cast_unet(input)
|
| 555 |
+
|
| 556 |
+
network_restore_weights_from_backup(org_module)
|
| 557 |
+
network_reset_cached_weight(org_module)
|
| 558 |
+
|
| 559 |
+
y = original_forward(org_module, input)
|
| 560 |
+
|
| 561 |
+
network_layer_name = getattr(org_module, 'network_layer_name', None)
|
| 562 |
+
for lora in loaded_networks:
|
| 563 |
+
module = lora.modules.get(network_layer_name, None)
|
| 564 |
+
if module is None:
|
| 565 |
+
continue
|
| 566 |
+
|
| 567 |
+
y = module.forward(input, y)
|
| 568 |
+
|
| 569 |
+
return y
|
| 570 |
+
|
| 571 |
+
|
| 572 |
+
def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
|
| 573 |
+
self.network_current_names = ()
|
| 574 |
+
self.network_weights_backup = None
|
| 575 |
+
self.network_bias_backup = None
|
| 576 |
+
|
| 577 |
+
|
| 578 |
+
def network_Linear_forward(self, input):
|
| 579 |
+
if shared.opts.lora_functional:
|
| 580 |
+
return network_forward(self, input, originals.Linear_forward)
|
| 581 |
+
|
| 582 |
+
network_apply_weights(self)
|
| 583 |
+
|
| 584 |
+
return originals.Linear_forward(self, input.float())
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
def network_Linear_load_state_dict(self, *args, **kwargs):
|
| 588 |
+
network_reset_cached_weight(self)
|
| 589 |
+
|
| 590 |
+
return originals.Linear_load_state_dict(self, *args, **kwargs)
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
def network_Conv2d_forward(self, input):
|
| 594 |
+
if shared.opts.lora_functional:
|
| 595 |
+
return network_forward(self, input, originals.Conv2d_forward)
|
| 596 |
+
|
| 597 |
+
network_apply_weights(self)
|
| 598 |
+
|
| 599 |
+
return originals.Conv2d_forward(self, input)
|
| 600 |
+
|
| 601 |
+
|
| 602 |
+
def network_Conv2d_load_state_dict(self, *args, **kwargs):
|
| 603 |
+
network_reset_cached_weight(self)
|
| 604 |
+
|
| 605 |
+
return originals.Conv2d_load_state_dict(self, *args, **kwargs)
|
| 606 |
+
|
| 607 |
+
|
| 608 |
+
def network_GroupNorm_forward(self, input):
|
| 609 |
+
if shared.opts.lora_functional:
|
| 610 |
+
return network_forward(self, input, originals.GroupNorm_forward)
|
| 611 |
+
|
| 612 |
+
network_apply_weights(self)
|
| 613 |
+
|
| 614 |
+
return originals.GroupNorm_forward(self, input)
|
| 615 |
+
|
| 616 |
+
|
| 617 |
+
def network_GroupNorm_load_state_dict(self, *args, **kwargs):
|
| 618 |
+
network_reset_cached_weight(self)
|
| 619 |
+
|
| 620 |
+
return originals.GroupNorm_load_state_dict(self, *args, **kwargs)
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
def network_LayerNorm_forward(self, input):
|
| 624 |
+
if shared.opts.lora_functional:
|
| 625 |
+
return network_forward(self, input, originals.LayerNorm_forward)
|
| 626 |
+
|
| 627 |
+
network_apply_weights(self)
|
| 628 |
+
|
| 629 |
+
return originals.LayerNorm_forward(self, input)
|
| 630 |
+
|
| 631 |
+
|
| 632 |
+
def network_LayerNorm_load_state_dict(self, *args, **kwargs):
|
| 633 |
+
network_reset_cached_weight(self)
|
| 634 |
+
|
| 635 |
+
return originals.LayerNorm_load_state_dict(self, *args, **kwargs)
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
def network_MultiheadAttention_forward(self, *args, **kwargs):
|
| 639 |
+
network_apply_weights(self)
|
| 640 |
+
|
| 641 |
+
return originals.MultiheadAttention_forward(self, *args, **kwargs)
|
| 642 |
+
|
| 643 |
+
|
| 644 |
+
def network_MultiheadAttention_load_state_dict(self, *args, **kwargs):
|
| 645 |
+
network_reset_cached_weight(self)
|
| 646 |
+
|
| 647 |
+
return originals.MultiheadAttention_load_state_dict(self, *args, **kwargs)
|
| 648 |
+
|
| 649 |
+
|
| 650 |
+
def process_network_files(names: list[str] | None = None):
|
| 651 |
+
candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
|
| 652 |
+
candidates += list(shared.walk_files(shared.cmd_opts.lyco_dir_backcompat, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
|
| 653 |
+
for filename in candidates:
|
| 654 |
+
if os.path.isdir(filename):
|
| 655 |
+
continue
|
| 656 |
+
name = os.path.splitext(os.path.basename(filename))[0]
|
| 657 |
+
# if names is provided, only load networks with names in the list
|
| 658 |
+
if names and name not in names:
|
| 659 |
+
continue
|
| 660 |
+
try:
|
| 661 |
+
entry = network.NetworkOnDisk(name, filename)
|
| 662 |
+
except OSError: # should catch FileNotFoundError and PermissionError etc.
|
| 663 |
+
errors.report(f"Failed to load network {name} from {filename}", exc_info=True)
|
| 664 |
+
continue
|
| 665 |
+
|
| 666 |
+
available_networks[name] = entry
|
| 667 |
+
|
| 668 |
+
if entry.alias in available_network_aliases:
|
| 669 |
+
forbidden_network_aliases[entry.alias.lower()] = 1
|
| 670 |
+
|
| 671 |
+
available_network_aliases[name] = entry
|
| 672 |
+
available_network_aliases[entry.alias] = entry
|
| 673 |
+
|
| 674 |
+
|
| 675 |
+
def update_available_networks_by_names(names: list[str]):
|
| 676 |
+
process_network_files(names)
|
| 677 |
+
|
| 678 |
+
|
| 679 |
+
def list_available_networks():
|
| 680 |
+
available_networks.clear()
|
| 681 |
+
available_network_aliases.clear()
|
| 682 |
+
forbidden_network_aliases.clear()
|
| 683 |
+
available_network_hash_lookup.clear()
|
| 684 |
+
forbidden_network_aliases.update({"none": 1, "Addams": 1})
|
| 685 |
+
|
| 686 |
+
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
|
| 687 |
+
|
| 688 |
+
process_network_files()
|
| 689 |
+
|
| 690 |
+
|
| 691 |
+
re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
|
| 692 |
+
|
| 693 |
+
|
| 694 |
+
def infotext_pasted(infotext, params):
|
| 695 |
+
if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
|
| 696 |
+
return # if the other extension is active, it will handle those fields, no need to do anything
|
| 697 |
+
|
| 698 |
+
added = []
|
| 699 |
+
|
| 700 |
+
for k in params:
|
| 701 |
+
if not k.startswith("AddNet Model "):
|
| 702 |
+
continue
|
| 703 |
+
|
| 704 |
+
num = k[13:]
|
| 705 |
+
|
| 706 |
+
if params.get("AddNet Module " + num) != "LoRA":
|
| 707 |
+
continue
|
| 708 |
+
|
| 709 |
+
name = params.get("AddNet Model " + num)
|
| 710 |
+
if name is None:
|
| 711 |
+
continue
|
| 712 |
+
|
| 713 |
+
m = re_network_name.match(name)
|
| 714 |
+
if m:
|
| 715 |
+
name = m.group(1)
|
| 716 |
+
|
| 717 |
+
multiplier = params.get("AddNet Weight A " + num, "1.0")
|
| 718 |
+
|
| 719 |
+
added.append(f"<lora:{name}:{multiplier}>")
|
| 720 |
+
|
| 721 |
+
if added:
|
| 722 |
+
params["Prompt"] += "\n" + "".join(added)
|
| 723 |
+
|
| 724 |
+
|
| 725 |
+
originals: lora_patches.LoraPatches = None
|
| 726 |
+
|
| 727 |
+
extra_network_lora = None
|
| 728 |
+
|
| 729 |
+
available_networks = {}
|
| 730 |
+
available_network_aliases = {}
|
| 731 |
+
loaded_networks = []
|
| 732 |
+
loaded_bundle_embeddings = {}
|
| 733 |
+
networks_in_memory = {}
|
| 734 |
+
available_network_hash_lookup = {}
|
| 735 |
+
forbidden_network_aliases = {}
|
| 736 |
+
|
| 737 |
+
list_available_networks()
|