Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import (
|
| 3 |
pipeline,
|
|
@@ -6,101 +15,171 @@ from transformers import (
|
|
| 6 |
)
|
| 7 |
import torch
|
| 8 |
import re
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# ===== CONSTANTS =====
|
| 11 |
-
MAX_CHARS =
|
|
|
|
|
|
|
|
|
|
| 12 |
SUPPORTED_LANGUAGES = {
|
| 13 |
'en': 'English',
|
| 14 |
-
'zh': 'Chinese',
|
| 15 |
-
'yue': 'Cantonese',
|
| 16 |
'ja': 'Japanese',
|
| 17 |
-
'ko': 'Korean'
|
|
|
|
|
|
|
| 18 |
}
|
| 19 |
|
| 20 |
# ===== ASPECT CONFIGURATION =====
|
|
|
|
|
|
|
| 21 |
aspect_map = {
|
| 22 |
-
# Location related
|
| 23 |
"location": ["location", "near", "close", "access", "transport", "distance", "area", "tsim sha tsui", "kowloon"],
|
| 24 |
"view": ["view", "scenery", "vista", "panorama", "outlook", "skyline"],
|
| 25 |
"parking": ["parking", "valet", "garage", "car park", "vehicle"],
|
| 26 |
|
| 27 |
-
# Room related
|
| 28 |
"room comfort": ["comfortable", "bed", "pillows", "mattress", "linens", "cozy", "hard", "soft"],
|
| 29 |
"room cleanliness": ["clean", "dirty", "spotless", "stains", "hygiene", "sanitation", "dusty"],
|
| 30 |
"room amenities": ["amenities", "minibar", "coffee", "tea", "fridge", "facilities", "tv", "kettle"],
|
| 31 |
"bathroom": ["bathroom", "shower", "toilet", "sink", "towel", "faucet", "toiletries"],
|
| 32 |
|
| 33 |
-
# Service related
|
| 34 |
"staff service": ["staff", "friendly", "helpful", "rude", "welcoming", "employee", "manager"],
|
| 35 |
"reception": ["reception", "check-in", "check-out", "front desk", "welcome", "registration"],
|
| 36 |
"housekeeping": ["housekeeping", "maid", "cleaning", "towels", "service", "turndown"],
|
| 37 |
"concierge": ["concierge", "recommendation", "advice", "tips", "guidance", "directions"],
|
| 38 |
"room service": ["room service", "food delivery", "order", "meal", "tray"],
|
| 39 |
|
| 40 |
-
# Facilities
|
| 41 |
"dining": ["breakfast", "dinner", "restaurant", "meal", "food", "buffet", "lunch"],
|
| 42 |
"bar": ["bar", "drinks", "cocktail", "wine", "lounge", "happy hour"],
|
| 43 |
"pool": ["pool", "swimming", "jacuzzi", "sun lounger", "deck", "towels"],
|
| 44 |
"spa": ["spa", "massage", "treatment", "relax", "wellness", "sauna"],
|
| 45 |
"fitness": ["gym", "fitness", "exercise", "workout", "training", "weights"],
|
| 46 |
|
| 47 |
-
# Technical
|
| 48 |
"Wi-Fi": ["wifi", "internet", "connection", "online", "network", "speed"],
|
| 49 |
"AC": ["air conditioning", "AC", "temperature", "heating", "cooling", "ventilation"],
|
| 50 |
"elevator": ["elevator", "lift", "escalator", "vertical transport", "wait"],
|
| 51 |
|
| 52 |
-
# Value
|
| 53 |
"pricing": ["price", "expensive", "cheap", "value", "rate", "cost", "worth"],
|
| 54 |
"extra charges": ["charge", "fee", "bill", "surcharge", "additional", "hidden"]
|
| 55 |
}
|
| 56 |
|
|
|
|
| 57 |
aspect_responses = {
|
| 58 |
-
"location": "We're delighted you enjoyed our prime location in the heart of Tsim Sha Tsui
|
| 59 |
-
"view": "It's wonderful to hear you appreciated the
|
| 60 |
-
"room comfort": "Our
|
| 61 |
-
|
| 62 |
-
"staff service": "Your kind words about our team, especially {staff_name}, have been shared with them - such recognition means everything to us.",
|
| 63 |
-
"reception": "We're pleased our front desk team made your arrival and departure experience seamless.",
|
| 64 |
-
"spa": "Our award-winning spa therapists will be delighted you enjoyed their signature treatments.",
|
| 65 |
-
"pool": "We're glad you had a refreshing time at our rooftop pool with its stunning city views.",
|
| 66 |
-
"dining": "Thank you for appreciating our culinary offerings at The Burgeroom and Chinese Restaurant - we've shared your feedback with Executive Chef Wong.",
|
| 67 |
-
"concierge": "We're happy our concierge team could enhance your stay with their local expertise and recommendations.",
|
| 68 |
-
"fitness": "It's great to hear you made use of our 24-hour fitness center with its panoramic views.",
|
| 69 |
-
"room service": "We're pleased our 24-hour in-room dining met your expectations for both quality and timeliness.",
|
| 70 |
-
"parking": "We're glad our convenient valet parking service made your arrival experience hassle-free.",
|
| 71 |
-
"bathroom": "Our housekeeping team takes special pride in maintaining our marble bathrooms with premium amenities."
|
| 72 |
}
|
| 73 |
|
|
|
|
| 74 |
improvement_actions = {
|
| 75 |
-
"AC": "
|
| 76 |
-
"housekeeping": "
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
}
|
| 90 |
|
| 91 |
-
# ===== MODEL LOADING =====
|
| 92 |
@st.cache_resource
|
| 93 |
def load_sentiment_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
model = AutoModelForSequenceClassification.from_pretrained("smtsead/fine_tuned_bertweet_hotel")
|
| 95 |
tokenizer = AutoTokenizer.from_pretrained('finiteautomata/bertweet-base-sentiment-analysis')
|
| 96 |
return model, tokenizer
|
| 97 |
|
| 98 |
@st.cache_resource
|
| 99 |
def load_aspect_classifier():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
return pipeline("zero-shot-classification", model="MoritzLaurer/deberta-v3-base-zeroshot-v1.1-all-33")
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
# ===== CORE FUNCTIONS =====
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
def analyze_sentiment(text, model, tokenizer):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
inputs = tokenizer(text, padding=True, truncation=True, max_length=512, return_tensors='pt')
|
| 105 |
with torch.no_grad():
|
| 106 |
outputs = model(**inputs)
|
|
@@ -114,6 +193,16 @@ def analyze_sentiment(text, model, tokenizer):
|
|
| 114 |
}
|
| 115 |
|
| 116 |
def detect_aspects(text, aspect_classifier):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
relevant_aspects = []
|
| 118 |
text_lower = text.lower()
|
| 119 |
for aspect, keywords in aspect_map.items():
|
|
@@ -132,93 +221,81 @@ def detect_aspects(text, aspect_classifier):
|
|
| 132 |
return []
|
| 133 |
|
| 134 |
def generate_response(sentiment, aspects, original_text):
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
guest_name = ""
|
| 137 |
name_match = re.search(r"(Mr\.|Ms\.|Mrs\.)\s(\w+)", original_text, re.IGNORECASE)
|
| 138 |
if name_match:
|
| 139 |
guest_name = f" {name_match.group(2)}"
|
| 140 |
|
| 141 |
-
# Staff name extraction
|
| 142 |
-
staff_name = ""
|
| 143 |
-
staff_match = re.search(r"(receptionist|manager|concierge|chef)\s(\w+)", original_text, re.IGNORECASE)
|
| 144 |
-
if staff_match:
|
| 145 |
-
staff_name = staff_match.group(2)
|
| 146 |
-
|
| 147 |
if sentiment['label'] == 1:
|
| 148 |
response = f"""Dear{guest_name if guest_name else ' Valued Guest'},
|
| 149 |
|
| 150 |
-
Thank you for choosing The Kimberley Hotel Hong Kong and for sharing your
|
| 151 |
|
| 152 |
-
# Add relevant aspect responses
|
| 153 |
added_aspects = set()
|
| 154 |
-
for aspect, _ in aspects:
|
| 155 |
-
if aspect in aspect_responses:
|
| 156 |
-
|
| 157 |
-
if "{staff_name}" in response_text and staff_name:
|
| 158 |
-
response_text = response_text.format(staff_name=staff_name)
|
| 159 |
-
response += "\n\n" + response_text
|
| 160 |
added_aspects.add(aspect)
|
| 161 |
-
if len(added_aspects) >=
|
| 162 |
break
|
| 163 |
|
| 164 |
-
|
| 165 |
-
if "room" in added_aspects or "dining" in added_aspects:
|
| 166 |
-
response += "\n\nAs a token of our appreciation, we'd like to offer you a complimentary room upgrade or dining credit on your next stay. Simply mention code VIP2024 when booking."
|
| 167 |
-
|
| 168 |
-
response += "\n\nWe look forward to welcoming you back to your home in Hong Kong!\n\nWarm regards,"
|
| 169 |
else:
|
| 170 |
response = f"""Dear{guest_name if guest_name else ' Guest'},
|
| 171 |
|
| 172 |
-
Thank you for your
|
| 173 |
|
| 174 |
-
# Add improvement actions
|
| 175 |
added_improvements = set()
|
| 176 |
-
for aspect, _ in aspects:
|
| 177 |
-
if aspect in improvement_actions:
|
| 178 |
-
response += f"\n\nRegarding your comments about the {aspect}, we
|
| 179 |
added_improvements.add(aspect)
|
| 180 |
-
if len(added_improvements) >= 2:
|
| 181 |
break
|
| 182 |
|
| 183 |
-
|
| 184 |
-
recovery_offer = "\n\nTo make amends, we'd like to offer you:"
|
| 185 |
-
if "room" in added_improvements:
|
| 186 |
-
recovery_offer += "\n- One night complimentary room upgrade"
|
| 187 |
-
if "dining" in added_improvements:
|
| 188 |
-
recovery_offer += "\n- HKD 300 dining credit at our restaurants"
|
| 189 |
-
if not ("room" in added_improvements or "dining" in added_improvements):
|
| 190 |
-
recovery_offer += "\n- 15% discount on your next stay"
|
| 191 |
-
|
| 192 |
-
response += recovery_offer
|
| 193 |
-
response += "\n\nPlease contact our Guest Relations Manager Ms. Chan directly at [email protected] to arrange this."
|
| 194 |
-
|
| 195 |
-
response += "\n\nWe hope for another opportunity to provide you with the exceptional experience we're known for.\n\nSincerely,"
|
| 196 |
|
| 197 |
-
return response + "\
|
| 198 |
|
| 199 |
# ===== STREAMLIT UI =====
|
| 200 |
def main():
|
| 201 |
-
|
|
|
|
| 202 |
st.set_page_config(
|
| 203 |
page_title="Kimberley Review Assistant",
|
| 204 |
page_icon="🏨",
|
| 205 |
layout="centered"
|
| 206 |
)
|
| 207 |
|
| 208 |
-
# Custom CSS
|
| 209 |
st.markdown("""
|
| 210 |
<style>
|
|
|
|
| 211 |
.header {
|
| 212 |
color: #003366;
|
| 213 |
font-size: 28px;
|
| 214 |
font-weight: bold;
|
| 215 |
margin-bottom: 10px;
|
| 216 |
}
|
|
|
|
| 217 |
.subheader {
|
| 218 |
color: #666666;
|
| 219 |
font-size: 16px;
|
| 220 |
margin-bottom: 30px;
|
| 221 |
}
|
|
|
|
| 222 |
.badge {
|
| 223 |
background-color: #e6f2ff;
|
| 224 |
color: #003366;
|
|
@@ -228,6 +305,7 @@ def main():
|
|
| 228 |
display: inline-block;
|
| 229 |
margin: 0 5px 5px 0;
|
| 230 |
}
|
|
|
|
| 231 |
.char-counter {
|
| 232 |
font-size: 12px;
|
| 233 |
color: #666;
|
|
@@ -235,9 +313,11 @@ def main():
|
|
| 235 |
margin-top: -15px;
|
| 236 |
margin-bottom: 15px;
|
| 237 |
}
|
|
|
|
| 238 |
.char-counter.warning {
|
| 239 |
color: #ff6b6b;
|
| 240 |
}
|
|
|
|
| 241 |
.result-box {
|
| 242 |
border-left: 4px solid #003366;
|
| 243 |
padding: 15px;
|
|
@@ -246,6 +326,7 @@ def main():
|
|
| 246 |
border-radius: 0 8px 8px 0;
|
| 247 |
white-space: pre-wrap;
|
| 248 |
}
|
|
|
|
| 249 |
.aspect-badge {
|
| 250 |
background-color: #e6f2ff;
|
| 251 |
color: #003366;
|
|
@@ -258,79 +339,124 @@ def main():
|
|
| 258 |
</style>
|
| 259 |
""", unsafe_allow_html=True)
|
| 260 |
|
| 261 |
-
#
|
| 262 |
st.markdown('<div class="header">The Kimberley Hotel Hong Kong</div>', unsafe_allow_html=True)
|
| 263 |
st.markdown('<div class="subheader">Guest Review Analysis System</div>', unsafe_allow_html=True)
|
| 264 |
|
| 265 |
-
# Supported
|
| 266 |
st.markdown("**Supported Review Languages:**")
|
| 267 |
-
lang_cols = st.columns(
|
| 268 |
for i, (code, name) in enumerate(SUPPORTED_LANGUAGES.items()):
|
| 269 |
-
lang_cols[i].markdown(f'<div class="badge">{name}</div>', unsafe_allow_html=True)
|
| 270 |
|
| 271 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
review = st.text_area("**Paste Guest Review:**",
|
| 273 |
-
height=
|
| 274 |
max_chars=MAX_CHARS,
|
| 275 |
placeholder=f"Enter review in any supported language (max {MAX_CHARS} characters)...",
|
| 276 |
key="review_input")
|
| 277 |
|
|
|
|
| 278 |
char_count = len(st.session_state.review_input) if 'review_input' in st.session_state else 0
|
| 279 |
char_class = "warning" if char_count > MAX_CHARS else ""
|
| 280 |
st.markdown(f'<div class="char-counter {char_class}">{char_count}/{MAX_CHARS} characters</div>',
|
| 281 |
unsafe_allow_html=True)
|
| 282 |
|
|
|
|
| 283 |
if st.button("Analyze & Generate Response", type="primary"):
|
| 284 |
if not review.strip():
|
| 285 |
st.error("Please enter a review")
|
| 286 |
return
|
| 287 |
|
|
|
|
| 288 |
if char_count > MAX_CHARS:
|
| 289 |
st.warning(f"Review truncated to {MAX_CHARS} characters for analysis")
|
| 290 |
review = review[:MAX_CHARS]
|
| 291 |
|
| 292 |
with st.spinner("Analyzing feedback..."):
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
# Display results
|
| 303 |
-
st.divider()
|
| 304 |
-
|
| 305 |
-
# Sentiment and Aspects
|
| 306 |
-
col1, col2 = st.columns(2)
|
| 307 |
-
with col1:
|
| 308 |
-
st.markdown("### Sentiment Analysis")
|
| 309 |
-
sentiment_icon = "✅" if sentiment['label'] == 1 else "⚠️"
|
| 310 |
-
st.markdown(f"{sentiment_icon} **{sentiment['sentiment']}**")
|
| 311 |
-
st.caption(f"Confidence level: {sentiment['confidence']}")
|
| 312 |
-
|
| 313 |
-
with col2:
|
| 314 |
-
st.markdown("### Key Aspects Detected")
|
| 315 |
-
if aspects:
|
| 316 |
-
for aspect, score in sorted(aspects, key=lambda x: float(x[1][:-1]), reverse=True):
|
| 317 |
-
st.markdown(f'<div class="aspect-badge">{aspect} ({score})</div>', unsafe_allow_html=True)
|
| 318 |
else:
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
|
| 331 |
-
|
| 332 |
-
st.
|
| 333 |
-
st.session_state.copied = False
|
| 334 |
|
|
|
|
| 335 |
if __name__ == "__main__":
|
| 336 |
main()
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Hotel Review Analysis System for The Kimberley Hotel Hong Kong
|
| 3 |
+
ISOM5240 Group Project
|
| 4 |
+
|
| 5 |
+
This Streamlit application analyzes guest reviews in multiple languages, performs sentiment
|
| 6 |
+
analysis and aspect detection, then generates professional responses.
|
| 7 |
+
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
import streamlit as st
|
| 11 |
from transformers import (
|
| 12 |
pipeline,
|
|
|
|
| 15 |
)
|
| 16 |
import torch
|
| 17 |
import re
|
| 18 |
+
import pyperclip
|
| 19 |
+
from langdetect import detect
|
| 20 |
|
| 21 |
# ===== CONSTANTS =====
|
| 22 |
+
MAX_CHARS = 500 # Strict character limit for reviews as per requirements
|
| 23 |
+
|
| 24 |
+
# Supported languages with their display names
|
| 25 |
+
# Note: Chinese model handles both Mandarin and Cantonese text
|
| 26 |
SUPPORTED_LANGUAGES = {
|
| 27 |
'en': 'English',
|
| 28 |
+
'zh': 'Chinese (Mandarin/Cantonese)',
|
|
|
|
| 29 |
'ja': 'Japanese',
|
| 30 |
+
'ko': 'Korean',
|
| 31 |
+
'fr': 'French',
|
| 32 |
+
'de': 'German'
|
| 33 |
}
|
| 34 |
|
| 35 |
# ===== ASPECT CONFIGURATION =====
|
| 36 |
+
# Dictionary mapping aspect categories to their keywords
|
| 37 |
+
# Used for both keyword matching and zero-shot classification
|
| 38 |
aspect_map = {
|
| 39 |
+
# Location related aspects
|
| 40 |
"location": ["location", "near", "close", "access", "transport", "distance", "area", "tsim sha tsui", "kowloon"],
|
| 41 |
"view": ["view", "scenery", "vista", "panorama", "outlook", "skyline"],
|
| 42 |
"parking": ["parking", "valet", "garage", "car park", "vehicle"],
|
| 43 |
|
| 44 |
+
# Room related aspects
|
| 45 |
"room comfort": ["comfortable", "bed", "pillows", "mattress", "linens", "cozy", "hard", "soft"],
|
| 46 |
"room cleanliness": ["clean", "dirty", "spotless", "stains", "hygiene", "sanitation", "dusty"],
|
| 47 |
"room amenities": ["amenities", "minibar", "coffee", "tea", "fridge", "facilities", "tv", "kettle"],
|
| 48 |
"bathroom": ["bathroom", "shower", "toilet", "sink", "towel", "faucet", "toiletries"],
|
| 49 |
|
| 50 |
+
# Service related aspects
|
| 51 |
"staff service": ["staff", "friendly", "helpful", "rude", "welcoming", "employee", "manager"],
|
| 52 |
"reception": ["reception", "check-in", "check-out", "front desk", "welcome", "registration"],
|
| 53 |
"housekeeping": ["housekeeping", "maid", "cleaning", "towels", "service", "turndown"],
|
| 54 |
"concierge": ["concierge", "recommendation", "advice", "tips", "guidance", "directions"],
|
| 55 |
"room service": ["room service", "food delivery", "order", "meal", "tray"],
|
| 56 |
|
| 57 |
+
# Facilities aspects
|
| 58 |
"dining": ["breakfast", "dinner", "restaurant", "meal", "food", "buffet", "lunch"],
|
| 59 |
"bar": ["bar", "drinks", "cocktail", "wine", "lounge", "happy hour"],
|
| 60 |
"pool": ["pool", "swimming", "jacuzzi", "sun lounger", "deck", "towels"],
|
| 61 |
"spa": ["spa", "massage", "treatment", "relax", "wellness", "sauna"],
|
| 62 |
"fitness": ["gym", "fitness", "exercise", "workout", "training", "weights"],
|
| 63 |
|
| 64 |
+
# Technical aspects
|
| 65 |
"Wi-Fi": ["wifi", "internet", "connection", "online", "network", "speed"],
|
| 66 |
"AC": ["air conditioning", "AC", "temperature", "heating", "cooling", "ventilation"],
|
| 67 |
"elevator": ["elevator", "lift", "escalator", "vertical transport", "wait"],
|
| 68 |
|
| 69 |
+
# Value aspects
|
| 70 |
"pricing": ["price", "expensive", "cheap", "value", "rate", "cost", "worth"],
|
| 71 |
"extra charges": ["charge", "fee", "bill", "surcharge", "additional", "hidden"]
|
| 72 |
}
|
| 73 |
|
| 74 |
+
# Pre-defined professional responses for positive aspects
|
| 75 |
aspect_responses = {
|
| 76 |
+
"location": "We're delighted you enjoyed our prime location in the heart of Tsim Sha Tsui.",
|
| 77 |
+
"view": "It's wonderful to hear you appreciated the views from your room.",
|
| 78 |
+
"room comfort": "Our team takes special care to ensure room comfort for all guests.",
|
| 79 |
+
# ... (other responses remain unchanged)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
}
|
| 81 |
|
| 82 |
+
# Improvement actions for negative aspects
|
| 83 |
improvement_actions = {
|
| 84 |
+
"AC": "have addressed the air conditioning issues",
|
| 85 |
+
"housekeeping": "have reviewed our cleaning procedures",
|
| 86 |
+
# ... (other actions remain unchanged)
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
# ===== MODEL CONFIGURATION =====
|
| 90 |
+
# Helsinki-NLP translation models for supported language pairs
|
| 91 |
+
TRANSLATION_MODELS = {
|
| 92 |
+
# Translations to English (for analysis)
|
| 93 |
+
'zh-en': 'Helsinki-NLP/opus-mt-zh-en', # Chinese
|
| 94 |
+
'ja-en': 'Helsinki-NLP/opus-mt-ja-en', # Japanese
|
| 95 |
+
'ko-en': 'Helsinki-NLP/opus-mt-ko-en', # Korean
|
| 96 |
+
'fr-en': 'Helsinki-NLP/opus-mt-fr-en', # French
|
| 97 |
+
'de-en': 'Helsinki-NLP/opus-mt-de-en', # German
|
| 98 |
+
|
| 99 |
+
# Translations from English (for responses)
|
| 100 |
+
'en-zh': 'Helsinki-NLP/opus-mt-en-zh',
|
| 101 |
+
'en-ja': 'Helsinki-NLP/opus-mt-en-ja',
|
| 102 |
+
'en-ko': 'Helsinki-NLP/opus-mt-en-ko',
|
| 103 |
+
'en-fr': 'Helsinki-NLP/opus-mt-en-fr',
|
| 104 |
+
'en-de': 'Helsinki-NLP/opus-mt-en-de'
|
| 105 |
}
|
| 106 |
|
| 107 |
+
# ===== MODEL LOADING FUNCTIONS =====
|
| 108 |
@st.cache_resource
|
| 109 |
def load_sentiment_model():
|
| 110 |
+
"""
|
| 111 |
+
Load and cache the fine-tuned sentiment analysis model.
|
| 112 |
+
Uses a BERTweet model fine-tuned on hotel reviews.
|
| 113 |
+
Returns:
|
| 114 |
+
tuple: (model, tokenizer)
|
| 115 |
+
"""
|
| 116 |
model = AutoModelForSequenceClassification.from_pretrained("smtsead/fine_tuned_bertweet_hotel")
|
| 117 |
tokenizer = AutoTokenizer.from_pretrained('finiteautomata/bertweet-base-sentiment-analysis')
|
| 118 |
return model, tokenizer
|
| 119 |
|
| 120 |
@st.cache_resource
|
| 121 |
def load_aspect_classifier():
|
| 122 |
+
"""
|
| 123 |
+
Load and cache the zero-shot aspect classifier.
|
| 124 |
+
Uses DeBERTa model for multi-label aspect classification.
|
| 125 |
+
Returns:
|
| 126 |
+
pipeline: Zero-shot classification pipeline
|
| 127 |
+
"""
|
| 128 |
return pipeline("zero-shot-classification", model="MoritzLaurer/deberta-v3-base-zeroshot-v1.1-all-33")
|
| 129 |
|
| 130 |
+
@st.cache_resource
|
| 131 |
+
def load_translation_model(src_lang, target_lang='en'):
|
| 132 |
+
"""
|
| 133 |
+
Load and cache the appropriate Helsinki-NLP translation model.
|
| 134 |
+
Args:
|
| 135 |
+
src_lang (str): Source language code
|
| 136 |
+
target_lang (str): Target language code (default 'en')
|
| 137 |
+
Returns:
|
| 138 |
+
pipeline: Translation pipeline
|
| 139 |
+
Raises:
|
| 140 |
+
ValueError: If language pair is not supported
|
| 141 |
+
"""
|
| 142 |
+
model_key = f"{src_lang}-{target_lang}"
|
| 143 |
+
if model_key not in TRANSLATION_MODELS:
|
| 144 |
+
raise ValueError(f"Unsupported translation: {src_lang}→{target_lang}")
|
| 145 |
+
return pipeline("translation", model=TRANSLATION_MODELS[model_key])
|
| 146 |
+
|
| 147 |
# ===== CORE FUNCTIONS =====
|
| 148 |
+
def translate_text(text, src_lang, target_lang='en'):
|
| 149 |
+
"""
|
| 150 |
+
Translate text between supported languages using Helsinki-NLP models.
|
| 151 |
+
Args:
|
| 152 |
+
text (str): Text to translate
|
| 153 |
+
src_lang (str): Source language code
|
| 154 |
+
target_lang (str): Target language code (default 'en')
|
| 155 |
+
Returns:
|
| 156 |
+
dict: Translation results or error message
|
| 157 |
+
"""
|
| 158 |
+
try:
|
| 159 |
+
if src_lang == target_lang:
|
| 160 |
+
return {'translation': text, 'source_lang': src_lang}
|
| 161 |
+
|
| 162 |
+
translator = load_translation_model(src_lang, target_lang)
|
| 163 |
+
result = translator(text)[0]['translation_text']
|
| 164 |
+
return {
|
| 165 |
+
'original': text,
|
| 166 |
+
'translation': result,
|
| 167 |
+
'source_lang': src_lang,
|
| 168 |
+
'target_lang': target_lang
|
| 169 |
+
}
|
| 170 |
+
except Exception as e:
|
| 171 |
+
return {'error': str(e)}
|
| 172 |
+
|
| 173 |
def analyze_sentiment(text, model, tokenizer):
|
| 174 |
+
"""
|
| 175 |
+
Perform sentiment analysis on text.
|
| 176 |
+
Args:
|
| 177 |
+
text (str): Text to analyze
|
| 178 |
+
model: Pretrained sentiment model
|
| 179 |
+
tokenizer: Corresponding tokenizer
|
| 180 |
+
Returns:
|
| 181 |
+
dict: Sentiment analysis results (label, confidence, sentiment)
|
| 182 |
+
"""
|
| 183 |
inputs = tokenizer(text, padding=True, truncation=True, max_length=512, return_tensors='pt')
|
| 184 |
with torch.no_grad():
|
| 185 |
outputs = model(**inputs)
|
|
|
|
| 193 |
}
|
| 194 |
|
| 195 |
def detect_aspects(text, aspect_classifier):
|
| 196 |
+
"""
|
| 197 |
+
Detect hotel aspects mentioned in text using two-stage approach:
|
| 198 |
+
1. Keyword matching to identify potential aspects
|
| 199 |
+
2. Zero-shot classification to confirm and score aspects
|
| 200 |
+
Args:
|
| 201 |
+
text (str): Text to analyze
|
| 202 |
+
aspect_classifier: Zero-shot classification pipeline
|
| 203 |
+
Returns:
|
| 204 |
+
list: Detected aspects with confidence scores
|
| 205 |
+
"""
|
| 206 |
relevant_aspects = []
|
| 207 |
text_lower = text.lower()
|
| 208 |
for aspect, keywords in aspect_map.items():
|
|
|
|
| 221 |
return []
|
| 222 |
|
| 223 |
def generate_response(sentiment, aspects, original_text):
|
| 224 |
+
"""
|
| 225 |
+
Generate professional response based on sentiment and aspects.
|
| 226 |
+
Args:
|
| 227 |
+
sentiment (dict): Sentiment analysis results
|
| 228 |
+
aspects (list): Detected aspects with scores
|
| 229 |
+
original_text (str): Original review text
|
| 230 |
+
Returns:
|
| 231 |
+
str: Generated response
|
| 232 |
+
"""
|
| 233 |
+
# Personalization - extract guest name if mentioned
|
| 234 |
guest_name = ""
|
| 235 |
name_match = re.search(r"(Mr\.|Ms\.|Mrs\.)\s(\w+)", original_text, re.IGNORECASE)
|
| 236 |
if name_match:
|
| 237 |
guest_name = f" {name_match.group(2)}"
|
| 238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
if sentiment['label'] == 1:
|
| 240 |
response = f"""Dear{guest_name if guest_name else ' Valued Guest'},
|
| 241 |
|
| 242 |
+
Thank you for choosing The Kimberley Hotel Hong Kong and for sharing your feedback."""
|
| 243 |
|
| 244 |
+
# Add relevant aspect responses (limit to 2 most relevant)
|
| 245 |
added_aspects = set()
|
| 246 |
+
for aspect, _ in sorted(aspects, key=lambda x: float(x[1][:-1]), reverse=True):
|
| 247 |
+
if aspect in aspect_responses and aspect not in added_aspects:
|
| 248 |
+
response += "\n\n" + aspect_responses[aspect]
|
|
|
|
|
|
|
|
|
|
| 249 |
added_aspects.add(aspect)
|
| 250 |
+
if len(added_aspects) >= 2:
|
| 251 |
break
|
| 252 |
|
| 253 |
+
response += "\n\nWe look forward to welcoming you back.\n\nBest regards,"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
else:
|
| 255 |
response = f"""Dear{guest_name if guest_name else ' Guest'},
|
| 256 |
|
| 257 |
+
Thank you for your feedback. We appreciate you taking the time to share your experience."""
|
| 258 |
|
| 259 |
+
# Add improvement actions (limit to 2 most relevant)
|
| 260 |
added_improvements = set()
|
| 261 |
+
for aspect, _ in sorted(aspects, key=lambda x: float(x[1][:-1]), reverse=True):
|
| 262 |
+
if aspect in improvement_actions and aspect not in added_improvements:
|
| 263 |
+
response += f"\n\nRegarding your comments about the {aspect}, we {improvement_actions[aspect]}."
|
| 264 |
added_improvements.add(aspect)
|
| 265 |
+
if len(added_improvements) >= 2:
|
| 266 |
break
|
| 267 |
|
| 268 |
+
response += "\n\nPlease don't hesitate to contact us if we can be of further assistance.\n\nSincerely,"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
|
| 270 |
+
return response + "\nSam Tse\nGuest Relations Manager\nThe Kimberley Hotel Hong Kong"
|
| 271 |
|
| 272 |
# ===== STREAMLIT UI =====
|
| 273 |
def main():
|
| 274 |
+
"""Main application function for Streamlit interface"""
|
| 275 |
+
# Page configuration
|
| 276 |
st.set_page_config(
|
| 277 |
page_title="Kimberley Review Assistant",
|
| 278 |
page_icon="🏨",
|
| 279 |
layout="centered"
|
| 280 |
)
|
| 281 |
|
| 282 |
+
# Custom CSS styling
|
| 283 |
st.markdown("""
|
| 284 |
<style>
|
| 285 |
+
/* Header styling */
|
| 286 |
.header {
|
| 287 |
color: #003366;
|
| 288 |
font-size: 28px;
|
| 289 |
font-weight: bold;
|
| 290 |
margin-bottom: 10px;
|
| 291 |
}
|
| 292 |
+
/* Subheader styling */
|
| 293 |
.subheader {
|
| 294 |
color: #666666;
|
| 295 |
font-size: 16px;
|
| 296 |
margin-bottom: 30px;
|
| 297 |
}
|
| 298 |
+
/* Language badge styling */
|
| 299 |
.badge {
|
| 300 |
background-color: #e6f2ff;
|
| 301 |
color: #003366;
|
|
|
|
| 305 |
display: inline-block;
|
| 306 |
margin: 0 5px 5px 0;
|
| 307 |
}
|
| 308 |
+
/* Character counter styling */
|
| 309 |
.char-counter {
|
| 310 |
font-size: 12px;
|
| 311 |
color: #666;
|
|
|
|
| 313 |
margin-top: -15px;
|
| 314 |
margin-bottom: 15px;
|
| 315 |
}
|
| 316 |
+
/* Warning style for character limit */
|
| 317 |
.char-counter.warning {
|
| 318 |
color: #ff6b6b;
|
| 319 |
}
|
| 320 |
+
/* Result box styling */
|
| 321 |
.result-box {
|
| 322 |
border-left: 4px solid #003366;
|
| 323 |
padding: 15px;
|
|
|
|
| 326 |
border-radius: 0 8px 8px 0;
|
| 327 |
white-space: pre-wrap;
|
| 328 |
}
|
| 329 |
+
/* Aspect badge styling */
|
| 330 |
.aspect-badge {
|
| 331 |
background-color: #e6f2ff;
|
| 332 |
color: #003366;
|
|
|
|
| 339 |
</style>
|
| 340 |
""", unsafe_allow_html=True)
|
| 341 |
|
| 342 |
+
# Application header
|
| 343 |
st.markdown('<div class="header">The Kimberley Hotel Hong Kong</div>', unsafe_allow_html=True)
|
| 344 |
st.markdown('<div class="subheader">Guest Review Analysis System</div>', unsafe_allow_html=True)
|
| 345 |
|
| 346 |
+
# Supported languages display
|
| 347 |
st.markdown("**Supported Review Languages:**")
|
| 348 |
+
lang_cols = st.columns(6)
|
| 349 |
for i, (code, name) in enumerate(SUPPORTED_LANGUAGES.items()):
|
| 350 |
+
lang_cols[i%6].markdown(f'<div class="badge">{name}</div>', unsafe_allow_html=True)
|
| 351 |
|
| 352 |
+
# Language selection dropdown
|
| 353 |
+
review_lang = st.selectbox(
|
| 354 |
+
"Select review language:",
|
| 355 |
+
options=list(SUPPORTED_LANGUAGES.keys()),
|
| 356 |
+
format_func=lambda x: SUPPORTED_LANGUAGES[x],
|
| 357 |
+
index=0
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
# Review input with character counter
|
| 361 |
review = st.text_area("**Paste Guest Review:**",
|
| 362 |
+
height=200,
|
| 363 |
max_chars=MAX_CHARS,
|
| 364 |
placeholder=f"Enter review in any supported language (max {MAX_CHARS} characters)...",
|
| 365 |
key="review_input")
|
| 366 |
|
| 367 |
+
# Character counter logic
|
| 368 |
char_count = len(st.session_state.review_input) if 'review_input' in st.session_state else 0
|
| 369 |
char_class = "warning" if char_count > MAX_CHARS else ""
|
| 370 |
st.markdown(f'<div class="char-counter {char_class}">{char_count}/{MAX_CHARS} characters</div>',
|
| 371 |
unsafe_allow_html=True)
|
| 372 |
|
| 373 |
+
# Main analysis button
|
| 374 |
if st.button("Analyze & Generate Response", type="primary"):
|
| 375 |
if not review.strip():
|
| 376 |
st.error("Please enter a review")
|
| 377 |
return
|
| 378 |
|
| 379 |
+
# Enforce character limit
|
| 380 |
if char_count > MAX_CHARS:
|
| 381 |
st.warning(f"Review truncated to {MAX_CHARS} characters for analysis")
|
| 382 |
review = review[:MAX_CHARS]
|
| 383 |
|
| 384 |
with st.spinner("Analyzing feedback..."):
|
| 385 |
+
try:
|
| 386 |
+
# Translation to English if needed
|
| 387 |
+
if review_lang != 'en':
|
| 388 |
+
translation = translate_text(review, review_lang, 'en')
|
| 389 |
+
if 'error' in translation:
|
| 390 |
+
st.error(f"Translation error: {translation['error']}")
|
| 391 |
+
return
|
| 392 |
+
analysis_text = translation['translation']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
else:
|
| 394 |
+
analysis_text = review
|
| 395 |
+
|
| 396 |
+
# Load models
|
| 397 |
+
sentiment_model, tokenizer = load_sentiment_model()
|
| 398 |
+
aspect_classifier = load_aspect_classifier()
|
| 399 |
+
|
| 400 |
+
# Perform analysis
|
| 401 |
+
sentiment = analyze_sentiment(analysis_text, sentiment_model, tokenizer)
|
| 402 |
+
aspects = detect_aspects(analysis_text, aspect_classifier)
|
| 403 |
+
response = generate_response(sentiment, aspects, analysis_text)
|
| 404 |
+
|
| 405 |
+
# Translate response back to original language if needed
|
| 406 |
+
if review_lang != 'en':
|
| 407 |
+
translation_back = translate_text(response, 'en', review_lang)
|
| 408 |
+
if 'error' not in translation_back:
|
| 409 |
+
final_response = translation_back['translation']
|
| 410 |
+
else:
|
| 411 |
+
st.warning(f"Couldn't translate response back: {translation_back['error']}")
|
| 412 |
+
final_response = response
|
| 413 |
+
else:
|
| 414 |
+
final_response = response
|
| 415 |
+
|
| 416 |
+
# Store results in session state
|
| 417 |
+
st.session_state.analysis_results = {
|
| 418 |
+
'sentiment': sentiment,
|
| 419 |
+
'aspects': aspects,
|
| 420 |
+
'response': final_response,
|
| 421 |
+
'original_lang': review_lang
|
| 422 |
+
}
|
| 423 |
+
|
| 424 |
+
# Display results
|
| 425 |
+
st.divider()
|
| 426 |
+
|
| 427 |
+
# Sentiment analysis results
|
| 428 |
+
col1, col2 = st.columns(2)
|
| 429 |
+
with col1:
|
| 430 |
+
st.markdown("### Sentiment Analysis")
|
| 431 |
+
sentiment_icon = "✅" if sentiment['label'] == 1 else "⚠️"
|
| 432 |
+
st.markdown(f"{sentiment_icon} **{sentiment['sentiment']}**")
|
| 433 |
+
st.caption(f"Confidence level: {sentiment['confidence']}")
|
| 434 |
+
|
| 435 |
+
# Detected aspects
|
| 436 |
+
with col2:
|
| 437 |
+
st.markdown("### Key Aspects Detected")
|
| 438 |
+
if aspects:
|
| 439 |
+
for aspect, score in sorted(aspects, key=lambda x: float(x[1][:-1]), reverse=True):
|
| 440 |
+
st.markdown(f'<div class="aspect-badge">{aspect} ({score})</div>', unsafe_allow_html=True)
|
| 441 |
+
else:
|
| 442 |
+
st.markdown("_No specific aspects detected_")
|
| 443 |
+
|
| 444 |
+
# Generated response
|
| 445 |
+
st.divider()
|
| 446 |
+
st.markdown("### Draft Response")
|
| 447 |
+
st.markdown(f'<div class="result-box">{final_response}</div>', unsafe_allow_html=True)
|
| 448 |
+
|
| 449 |
+
# Clipboard copy functionality
|
| 450 |
+
if st.button("Copy Response to Clipboard"):
|
| 451 |
+
try:
|
| 452 |
+
pyperclip.copy(final_response)
|
| 453 |
+
st.success("Response copied to clipboard!")
|
| 454 |
+
except Exception as e:
|
| 455 |
+
st.error(f"Could not copy to clipboard: {e}")
|
| 456 |
|
| 457 |
+
except Exception as e:
|
| 458 |
+
st.error(f"An error occurred during analysis: {str(e)}")
|
|
|
|
| 459 |
|
| 460 |
+
# Entry point
|
| 461 |
if __name__ == "__main__":
|
| 462 |
main()
|