Spaces:
Build error
Build error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
| 3 |
+
import spacy
|
| 4 |
+
from tika import parser
|
| 5 |
+
import requests
|
| 6 |
+
import pandas as pd
|
| 7 |
+
|
| 8 |
+
# Loading spaCy model outside the streamlit cache
|
| 9 |
+
nlp = spacy.load("en_core_web_sm")
|
| 10 |
+
|
| 11 |
+
@st.cache(allow_output_mutation=True)
|
| 12 |
+
def load_environmental_model():
|
| 13 |
+
name_env = "ESGBERT/EnvironmentalBERT-environmental"
|
| 14 |
+
tokenizer_env = AutoTokenizer.from_pretrained(name_env)
|
| 15 |
+
model_env = AutoModelForSequenceClassification.from_pretrained(name_env)
|
| 16 |
+
return pipeline("text-classification", model=model_env, tokenizer=tokenizer_env)
|
| 17 |
+
|
| 18 |
+
@st.cache(allow_output_mutation=True)
|
| 19 |
+
def load_social_model():
|
| 20 |
+
name_soc = "ESGBERT/SocialBERT-social"
|
| 21 |
+
tokenizer_soc = AutoTokenizer.from_pretrained(name_soc)
|
| 22 |
+
model_soc = AutoModelForSequenceClassification.from_pretrained(name_soc)
|
| 23 |
+
return pipeline("text-classification", model=model_soc, tokenizer=tokenizer_soc)
|
| 24 |
+
|
| 25 |
+
@st.cache(allow_output_mutation=True)
|
| 26 |
+
def load_governance_model():
|
| 27 |
+
name_gov = "ESGBERT/GovernanceBERT-governance"
|
| 28 |
+
tokenizer_gov = AutoTokenizer.from_pretrained(name_gov)
|
| 29 |
+
model_gov = AutoModelForSequenceClassification.from_pretrained(name_gov)
|
| 30 |
+
return pipeline("text-classification", model=model_gov, tokenizer=tokenizer_gov)
|
| 31 |
+
|
| 32 |
+
@st.cache(allow_output_mutation=True)
|
| 33 |
+
def load_sentiment_model():
|
| 34 |
+
model_name = "climatebert/distilroberta-base-climate-sentiment"
|
| 35 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, max_len=512)
|
| 37 |
+
return pipeline("text-classification", model=model, tokenizer=tokenizer)
|
| 38 |
+
|
| 39 |
+
# Streamlit App
|
| 40 |
+
st.title("ESGBERT Text Classification App")
|
| 41 |
+
|
| 42 |
+
# Get report URL from user input
|
| 43 |
+
url = st.text_input("Enter the URL of the report (PDF):")
|
| 44 |
+
|
| 45 |
+
# Model selection dropdown
|
| 46 |
+
selected_model = st.selectbox("Select Model", ["Environmental Model", "Social Model", "Governance Model", "Sentiment Model"])
|
| 47 |
+
|
| 48 |
+
if url:
|
| 49 |
+
# Download PDF content from the URL
|
| 50 |
+
response = requests.get(url, stream=True)
|
| 51 |
+
|
| 52 |
+
if response.status_code == 200:
|
| 53 |
+
# Parse PDF and extract text
|
| 54 |
+
raw_text = parser.from_buffer(response.content)['content']
|
| 55 |
+
|
| 56 |
+
# Extract sentences using spaCy
|
| 57 |
+
doc = nlp(raw_text)
|
| 58 |
+
sentences = [sent.text for sent in doc.sents]
|
| 59 |
+
|
| 60 |
+
# Filtering and preprocessing sentences
|
| 61 |
+
sequences = list(map(str, sentences))
|
| 62 |
+
sentences = [x.replace("\n", "") for x in sequences]
|
| 63 |
+
sentences = [x for x in sentences if x != ""]
|
| 64 |
+
sentences = [x for x in sentences if x[0].isupper()]
|
| 65 |
+
sub_sentences = sentences[:100] # Takes around 20 seconds
|
| 66 |
+
|
| 67 |
+
# Classification using different models based on user selection
|
| 68 |
+
if selected_model == "Environmental Model":
|
| 69 |
+
pipe_model = load_environmental_model()
|
| 70 |
+
elif selected_model == "Social Model":
|
| 71 |
+
pipe_model = load_social_model()
|
| 72 |
+
elif selected_model == "Governance Model":
|
| 73 |
+
pipe_model = load_governance_model()
|
| 74 |
+
else:
|
| 75 |
+
pipe_model = load_sentiment_model()
|
| 76 |
+
|
| 77 |
+
# Get predictions for the selected model
|
| 78 |
+
model_results = pipe_model(sub_sentences, padding=True, truncation=True)
|
| 79 |
+
model_labels = [x["label"] for x in model_results]
|
| 80 |
+
|
| 81 |
+
# Display count of sentences labeled as the selected model
|
| 82 |
+
st.subheader(f"{selected_model} Sentences Count")
|
| 83 |
+
st.write(pd.DataFrame({"sentence": sub_sentences, selected_model: model_labels}).groupby(selected_model).count())
|
| 84 |
+
|
| 85 |
+
else:
|
| 86 |
+
st.error("Error fetching PDF content from the provided URL. Please check the URL and try again.")
|