#!/usr/bin/env python3 """ Migration script to move data from ChromaDB to PostgreSQL with data optimization. This script reduces data size to fit within Render's 1GB PostgreSQL free tier limit. """ import gc import logging import os import re import sys from typing import Any, Dict, List, Optional # Add the src directory to the path sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..", "src")) from src.config import ( # noqa: E402 COLLECTION_NAME, MAX_DOCUMENT_LENGTH, MAX_DOCUMENTS_IN_MEMORY, VECTOR_DB_PERSIST_PATH, ) from src.embedding.embedding_service import EmbeddingService # noqa: E402 from src.vector_db.postgres_vector_service import PostgresVectorService # noqa: E402 from src.vector_store.vector_db import VectorDatabase # noqa: E402 # Configure logging logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s") logger = logging.getLogger(__name__) class DataOptimizer: """Optimizes document data to reduce storage requirements.""" @staticmethod def summarize_text(text: str, max_length: int = MAX_DOCUMENT_LENGTH) -> str: """ Summarize text to reduce storage while preserving key information. Args: text: Original text max_length: Maximum length for summarized text Returns: Summarized text """ if len(text) <= max_length: return text.strip() # Simple extractive summarization: keep first few sentences sentences = re.split(r"[.!?]+", text) summary = "" for sentence in sentences: sentence = sentence.strip() if not sentence: continue # Check if adding this sentence would exceed limit if len(summary + sentence + ".") > max_length: break summary += sentence + ". " # If summary is too short, take first max_length characters if len(summary) < max_length // 4: summary = text[:max_length].strip() return summary.strip() @staticmethod def clean_metadata(metadata: Dict[str, Any]) -> Dict[str, Any]: """ Clean metadata to keep only essential fields. Args: metadata: Original metadata Returns: Cleaned metadata with only essential fields """ essential_fields = { "source", "title", "page", "chunk_id", "document_type", "created_at", "file_path", "section", } cleaned = {} for key, value in metadata.items(): if key in essential_fields and value is not None: # Convert to simple types and truncate long strings if isinstance(value, str) and len(value) > 100: cleaned[key] = value[:100] elif isinstance(value, (str, int, float, bool)): cleaned[key] = value return cleaned @staticmethod def should_include_document(metadata: Dict[str, Any], content: str) -> bool: """ Decide whether to include a document based on quality metrics. Args: metadata: Document metadata content: Document content Returns: True if document should be included """ # Skip very short documents (likely not useful) if len(content.strip()) < 50: return False # Skip documents with no meaningful content if not re.search(r"[a-zA-Z]{3,}", content): return False # Prioritize certain document types if available doc_type = metadata.get("document_type", "").lower() if doc_type in ["policy", "procedure", "guideline"]: return True return True class ChromaToPostgresMigrator: """Migrates data from ChromaDB to PostgreSQL with optimization.""" def __init__(self, database_url: Optional[str] = None): """ Initialize the migrator. Args: database_url: PostgreSQL connection string """ self.database_url = database_url or os.getenv("DATABASE_URL") if not self.database_url: raise ValueError("DATABASE_URL environment variable is required") self.optimizer = DataOptimizer() self.embedding_service = None self.total_migrated = 0 self.total_skipped = 0 def initialize_services(self): """Initialize embedding service and database connections.""" logger.info("Initializing services...") # Initialize embedding service self.embedding_service = EmbeddingService() # Initialize ChromaDB (source) self.chroma_db = VectorDatabase(persist_path=VECTOR_DB_PERSIST_PATH, collection_name=COLLECTION_NAME) # Initialize PostgreSQL (destination) self.postgres_service = PostgresVectorService(connection_string=self.database_url, table_name=COLLECTION_NAME) logger.info("Services initialized successfully") def get_chroma_documents(self, batch_size: int = MAX_DOCUMENTS_IN_MEMORY) -> List[Dict[str, Any]]: """ Retrieve all documents from ChromaDB in batches. Args: batch_size: Number of documents to retrieve per batch Yields: Batches of documents """ try: total_count = self.chroma_db.get_count() logger.info(f"Found {total_count} documents in ChromaDB") if total_count == 0: return # Get all documents (ChromaDB doesn't have native pagination) collection = self.chroma_db.get_collection() all_data = collection.get(include=["documents", "metadatas", "embeddings"]) if not all_data or not all_data.get("documents"): logger.warning("No documents found in ChromaDB collection") return # Process in batches documents = all_data["documents"] metadatas = all_data.get("metadatas", [{}] * len(documents)) embeddings = all_data.get("embeddings", []) ids = all_data.get("ids", []) for i in range(0, len(documents), batch_size): batch_end = min(i + batch_size, len(documents)) batch_docs = documents[i:batch_end] batch_metadata = metadatas[i:batch_end] if metadatas else [{}] * len(batch_docs) batch_embeddings = embeddings[i:batch_end] if embeddings else [] batch_ids = ids[i:batch_end] if ids else [] yield { "documents": batch_docs, "metadatas": batch_metadata, "embeddings": batch_embeddings, "ids": batch_ids, } except Exception as e: logger.error(f"Error retrieving ChromaDB documents: {e}") raise def process_batch(self, batch: Dict[str, Any]) -> Dict[str, int]: """ Process a batch of documents with optimization. Args: batch: Batch of documents from ChromaDB Returns: Dictionary with processing statistics """ documents = batch["documents"] metadatas = batch["metadatas"] embeddings = batch["embeddings"] processed_docs = [] processed_metadata = [] processed_embeddings = [] stats = {"processed": 0, "skipped": 0, "reembedded": 0} for i, (doc, metadata) in enumerate(zip(documents, metadatas)): # Clean and optimize document cleaned_metadata = self.optimizer.clean_metadata(metadata or {}) # Check if we should include this document if not self.optimizer.should_include_document(cleaned_metadata, doc): stats["skipped"] += 1 continue # Summarize document content summarized_doc = self.optimizer.summarize_text(doc) # Use existing embedding if available and document wasn't changed much if embeddings and i < len(embeddings) and len(doc) == len(summarized_doc): # Document unchanged, use existing embedding embedding = embeddings[i] else: # Document changed, need new embedding try: embedding = self.embedding_service.generate_embeddings([summarized_doc])[0] stats["reembedded"] += 1 except Exception as e: logger.warning(f"Failed to generate embedding for document {i}: {e}") stats["skipped"] += 1 continue processed_docs.append(summarized_doc) processed_metadata.append(cleaned_metadata) processed_embeddings.append(embedding) stats["processed"] += 1 # Add processed documents to PostgreSQL if processed_docs: try: doc_ids = self.postgres_service.add_documents( texts=processed_docs, embeddings=processed_embeddings, metadatas=processed_metadata, ) logger.info(f"Added {len(doc_ids)} documents to PostgreSQL") except Exception as e: logger.error(f"Failed to add documents to PostgreSQL: {e}") raise # Force garbage collection gc.collect() return stats def migrate(self) -> Dict[str, int]: """ Perform the complete migration. Returns: Migration statistics """ logger.info("Starting ChromaDB to PostgreSQL migration...") self.initialize_services() # Clear existing PostgreSQL data logger.info("Clearing existing PostgreSQL data...") deleted_count = self.postgres_service.delete_all_documents() logger.info(f"Deleted {deleted_count} existing documents from PostgreSQL") total_stats = {"processed": 0, "skipped": 0, "reembedded": 0} batch_count = 0 try: # Process documents in batches for batch in self.get_chroma_documents(): batch_count += 1 logger.info(f"Processing batch {batch_count}...") batch_stats = self.process_batch(batch) # Update totals for key in total_stats: total_stats[key] += batch_stats[key] logger.info(f"Batch {batch_count} complete: {batch_stats}") # Memory cleanup between batches gc.collect() # Final statistics logger.info("Migration completed successfully!") logger.info(f"Final statistics: {total_stats}") # Verify migration postgres_info = self.postgres_service.get_collection_info() logger.info(f"PostgreSQL collection info: {postgres_info}") return total_stats except Exception as e: logger.error(f"Migration failed: {e}") raise def test_migration(self, test_query: str = "policy") -> Dict[str, Any]: """ Test the migrated data by performing a search. Args: test_query: Query to test with Returns: Test results """ logger.info(f"Testing migration with query: '{test_query}'") try: # Generate query embedding query_embedding = self.embedding_service.generate_embeddings([test_query])[0] # Search PostgreSQL results = self.postgres_service.similarity_search(query_embedding, k=5) logger.info("Test search returned %d results", len(results)) for i, result in enumerate(results): logger.info( "Result %d: %s... (score: %.3f)" % ( i + 1, result.get("content", "")[:100], result.get("similarity_score", 0), ) ) return { "query": test_query, "results_count": len(results), "results": results, } except Exception as e: logger.error(f"Migration test failed: {e}") return {"error": str(e)} def main(): """Main migration function.""" import argparse parser = argparse.ArgumentParser(description="Migrate ChromaDB to PostgreSQL") parser.add_argument("--database-url", help="PostgreSQL connection URL") parser.add_argument("--test-only", action="store_true", help="Only run migration test") parser.add_argument( "--dry-run", action="store_true", help="Show what would be migrated without actually migrating", ) args = parser.parse_args() try: migrator = ChromaToPostgresMigrator(database_url=args.database_url) if args.test_only: # Only test existing migration migrator.initialize_services() results = migrator.test_migration() print(f"Test results: {results}") elif args.dry_run: # Show what would be migrated migrator.initialize_services() total_docs = migrator.chroma_db.get_count() logger.info(f"Would migrate {total_docs} documents from ChromaDB to PostgreSQL") else: # Perform actual migration stats = migrator.migrate() logger.info(f"Migration complete: {stats}") # Test the migration test_results = migrator.test_migration() logger.info(f"Migration test: {test_results}") except Exception as e: logger.error(f"Migration script failed: {e}") sys.exit(1) if __name__ == "__main__": main()