msse-ai-engineering / tests /test_integration /test_end_to_end_phase2b.py
sethmcknight
Refactor test cases for improved readability and consistency
159faf0
"""
Comprehensive end-to-end tests for Phase 2B implementation.
This module tests the complete pipeline from document ingestion through
embedding generation to semantic search, validating both functionality
and quality of results.
"""
import os
import shutil
import tempfile
import time
from typing import List
import pytest
import src.config as config
from src.embedding.embedding_service import EmbeddingService
from src.ingestion.ingestion_pipeline import IngestionPipeline
from src.search.search_service import SearchService
from src.vector_store.vector_db import VectorDatabase
class TestPhase2BEndToEnd:
"""Comprehensive end-to-end tests for Phase 2B semantic search pipeline."""
# Test queries for search quality validation
TEST_QUERIES = [
"remote work from home policy",
"employee benefits and health insurance",
"vacation time and PTO",
"code of conduct and ethics",
"information security requirements",
"performance review process",
"expense reimbursement",
"parental leave",
"workplace safety",
"professional development",
]
def setup_method(self):
"""Set up test environment with temporary database and services."""
self.test_dir = tempfile.mkdtemp()
# Initialize all services
self.embedding_service = EmbeddingService()
self.vector_db = VectorDatabase(persist_path=self.test_dir, collection_name="test_phase2b_e2e")
self.search_service = SearchService(self.vector_db, self.embedding_service)
self.ingestion_pipeline = IngestionPipeline(
chunk_size=config.DEFAULT_CHUNK_SIZE,
overlap=config.DEFAULT_OVERLAP,
seed=config.RANDOM_SEED,
embedding_service=self.embedding_service,
vector_db=self.vector_db,
)
# Performance tracking
self.performance_metrics = {}
def teardown_method(self):
"""Clean up temporary resources."""
if hasattr(self, "test_dir"):
shutil.rmtree(self.test_dir, ignore_errors=True)
def test_full_pipeline_ingestion_to_search(self):
"""Test complete pipeline: ingest documents → generate embeddings → search."""
start_time = time.time()
# Step 1: Ingest synthetic policies with embeddings
synthetic_dir = "synthetic_policies"
assert os.path.exists(synthetic_dir), "Synthetic policies directory required"
ingestion_start = time.time()
result = self.ingestion_pipeline.process_directory_with_embeddings(synthetic_dir)
ingestion_time = time.time() - ingestion_start
# Validate ingestion results
assert result["status"] == "success"
assert result["chunks_processed"] > 0
assert "embeddings_stored" in result
assert result["embeddings_stored"] > 0
assert result["chunks_processed"] == result["embeddings_stored"]
# Store metrics
self.performance_metrics["ingestion_time"] = ingestion_time
self.performance_metrics["chunks_processed"] = result["chunks_processed"]
# Step 2: Test search functionality
search_start = time.time()
search_results = self.search_service.search("remote work policy", top_k=5, threshold=0.2)
search_time = time.time() - search_start
# Validate search results
assert len(search_results) > 0, "Search should return results"
assert all(r["similarity_score"] >= 0.2 for r in search_results)
assert all("chunk_id" in r for r in search_results)
assert all("content" in r for r in search_results)
assert all("metadata" in r for r in search_results)
# Store metrics
self.performance_metrics["search_time"] = search_time
self.performance_metrics["total_pipeline_time"] = time.time() - start_time
# Validate performance thresholds
assert ingestion_time < 120, f"Ingestion took {ingestion_time:.2f}s, should be < 120s"
assert search_time < 5, f"Search took {search_time:.2f}s, should be < 5s"
def test_search_quality_validation(self):
"""Test search quality across different policy areas."""
# First ingest the policies
synthetic_dir = "synthetic_policies"
result = self.ingestion_pipeline.process_directory_with_embeddings(synthetic_dir)
assert result["status"] == "success"
quality_results = {}
for query in self.TEST_QUERIES:
search_results = self.search_service.search(query, top_k=3, threshold=0.0)
# Basic quality checks
assert len(search_results) > 0, f"No results for query: {query}"
# Relevance validation - relaxed threshold for testing
top_result = search_results[0]
print(f"Query: '{query}' - Top similarity: {top_result['similarity_score']}")
assert top_result["similarity_score"] >= 0.0, (
f"Top result for '{query}' has invalid similarity: " f"{top_result['similarity_score']}"
)
# Content relevance heuristics
query_keywords = query.lower().split()
content_lower = top_result["content"].lower()
# At least one query keyword should appear in top result
keyword_found = any(keyword in content_lower for keyword in query_keywords)
if not keyword_found:
# For semantic search, check if related terms appear
related_terms = self._get_related_terms(query)
semantic_match = any(term in content_lower for term in related_terms)
assert semantic_match, (
f"No relevant keywords found in top result for '{query}'. "
f"Content: {top_result['content'][:100]}..."
)
quality_results[query] = {
"results_count": len(search_results),
"top_similarity": top_result["similarity_score"],
"avg_similarity": sum(r["similarity_score"] for r in search_results) / len(search_results),
}
# Store quality metrics
self.performance_metrics["search_quality"] = quality_results
# Overall quality validation
avg_top_similarity = sum(metrics["top_similarity"] for metrics in quality_results.values()) / len(
quality_results
)
assert avg_top_similarity >= 0.2, f"Average top similarity {avg_top_similarity:.3f} below threshold 0.2"
def test_data_persistence_across_sessions(self):
"""Test that vector data persists correctly across database sessions."""
# Ingest some data
synthetic_dir = "synthetic_policies"
result = self.ingestion_pipeline.process_directory_with_embeddings(synthetic_dir)
assert result["status"] == "success"
# Perform initial search
initial_results = self.search_service.search("remote work", top_k=3)
assert len(initial_results) > 0
# Simulate session restart by creating new services
new_vector_db = VectorDatabase(persist_path=self.test_dir, collection_name="test_phase2b_e2e")
new_search_service = SearchService(new_vector_db, self.embedding_service)
# Verify data persistence
persistent_results = new_search_service.search("remote work", top_k=3)
assert len(persistent_results) == len(initial_results)
assert persistent_results[0]["chunk_id"] == initial_results[0]["chunk_id"]
assert persistent_results[0]["similarity_score"] == initial_results[0]["similarity_score"]
def test_error_handling_and_recovery(self):
"""Test error handling scenarios and recovery mechanisms."""
# Test 1: Search before ingestion
empty_results = self.search_service.search("any query", top_k=5)
assert len(empty_results) == 0, "Should return empty results for empty database"
# Test 2: Invalid search parameters
with pytest.raises((ValueError, TypeError)):
self.search_service.search("", top_k=-1)
with pytest.raises((ValueError, TypeError)):
self.search_service.search("valid query", top_k=0)
# Test 3: Very long query
long_query = "very long query " * 100 # 1500+ characters
long_results = self.search_service.search(long_query, top_k=3)
# Should not crash, may return 0 or valid results
assert isinstance(long_results, list)
# Test 4: Special characters in query
special_query = "query with @#$%^&*(){}[] special characters"
special_results = self.search_service.search(special_query, top_k=3)
# Should not crash
assert isinstance(special_results, list)
def test_batch_processing_efficiency(self):
"""Test that batch processing works efficiently for large document sets."""
# Ingest with timing
synthetic_dir = "synthetic_policies"
start_time = time.time()
result = self.ingestion_pipeline.process_directory_with_embeddings(synthetic_dir)
processing_time = time.time() - start_time
# Validate batch processing results
assert result["status"] == "success"
chunks_processed = result["chunks_processed"]
# Calculate processing rate
processing_rate = chunks_processed / processing_time if processing_time > 0 else 0
self.performance_metrics["processing_rate"] = processing_rate
# Validate reasonable processing rate (at least 1 chunk/second)
assert processing_rate >= 1, f"Processing rate {processing_rate:.2f} chunks/sec too slow"
# Validate memory efficiency (no excessive memory usage)
# This is implicit - if the test completes without memory errors, it passes
def test_search_parameter_variations(self):
"""Test search functionality with different parameter combinations."""
# Ingest data first
synthetic_dir = "synthetic_policies"
result = self.ingestion_pipeline.process_directory_with_embeddings(synthetic_dir)
assert result["status"] == "success"
test_query = "employee benefits"
# Test different top_k values
for top_k in [1, 3, 5, 10]:
results = self.search_service.search(test_query, top_k=top_k)
assert len(results) <= top_k, f"Returned more than top_k={top_k} results"
# Test different threshold values
for threshold in [0.0, 0.2, 0.5, 0.8]:
results = self.search_service.search(test_query, top_k=10, threshold=threshold)
assert all(r["similarity_score"] >= threshold for r in results), f"Results below threshold {threshold}"
# Test edge cases
high_threshold_results = self.search_service.search(test_query, top_k=5, threshold=0.9)
# May return 0 results with high threshold, which is valid
assert isinstance(high_threshold_results, list)
def test_concurrent_search_operations(self):
"""Test multiple concurrent search operations."""
# Ingest data first
synthetic_dir = "synthetic_policies"
result = self.ingestion_pipeline.process_directory_with_embeddings(synthetic_dir)
assert result["status"] == "success"
# Perform multiple searches in sequence (simulating concurrency)
queries = [
"remote work",
"benefits",
"security",
"vacation",
"training",
]
results_list = []
for query in queries:
results = self.search_service.search(query, top_k=3)
results_list.append(results)
# Validate all searches completed successfully
assert len(results_list) == len(queries)
assert all(isinstance(results, list) for results in results_list)
def test_vector_database_performance(self):
"""Test vector database performance and storage efficiency."""
# Ingest data and measure
synthetic_dir = "synthetic_policies"
start_time = time.time()
result = self.ingestion_pipeline.process_directory_with_embeddings(synthetic_dir)
ingestion_time = time.time() - start_time
# Measure database size
db_size = self._get_database_size()
self.performance_metrics["database_size_mb"] = db_size
# Performance assertions
chunks_processed = result["chunks_processed"]
avg_time_per_chunk = ingestion_time / chunks_processed if chunks_processed > 0 else 0
assert avg_time_per_chunk < 5, f"Average time per chunk {avg_time_per_chunk:.3f}s too slow"
# Database size should be reasonable (not excessive)
max_size_mb = chunks_processed * 0.1 # Conservative estimate: 0.1MB per chunk
assert db_size <= max_size_mb, f"Database size {db_size:.2f}MB exceeds threshold {max_size_mb:.2f}MB"
def test_search_result_consistency(self):
"""Test that identical searches return consistent results."""
# Ingest data
synthetic_dir = "synthetic_policies"
result = self.ingestion_pipeline.process_directory_with_embeddings(synthetic_dir)
assert result["status"] == "success"
query = "remote work policy"
# Perform same search multiple times
results_1 = self.search_service.search(query, top_k=5, threshold=0.3)
results_2 = self.search_service.search(query, top_k=5, threshold=0.3)
results_3 = self.search_service.search(query, top_k=5, threshold=0.3)
# Validate consistency
assert len(results_1) == len(results_2) == len(results_3)
for i in range(len(results_1)):
assert results_1[i]["chunk_id"] == results_2[i]["chunk_id"] == results_3[i]["chunk_id"]
assert abs(results_1[i]["similarity_score"] - results_2[i]["similarity_score"]) < 0.001
assert abs(results_1[i]["similarity_score"] - results_3[i]["similarity_score"]) < 0.001
def test_comprehensive_pipeline_validation(self):
"""Comprehensive validation of the entire Phase 2B pipeline."""
# Complete pipeline test with detailed validation
synthetic_dir = "synthetic_policies"
# Step 1: Validate directory exists and has content
assert os.path.exists(synthetic_dir)
policy_files = [f for f in os.listdir(synthetic_dir) if f.endswith(".md")]
assert len(policy_files) > 0, "No policy files found"
# Step 2: Full ingestion with comprehensive validation
result = self.ingestion_pipeline.process_directory_with_embeddings(synthetic_dir)
assert result["status"] == "success"
assert result["chunks_processed"] >= len(policy_files) # At least one chunk per file
assert result["embeddings_stored"] == result["chunks_processed"]
assert "processing_time_seconds" in result
assert result["processing_time_seconds"] > 0
# Step 3: Comprehensive search validation
for query in self.TEST_QUERIES[:5]: # Test first 5 queries
results = self.search_service.search(query, top_k=3, threshold=0.0)
# Validate result structure
for result_item in results:
assert "chunk_id" in result_item
assert "content" in result_item
assert "similarity_score" in result_item
assert "metadata" in result_item
# Validate content quality
assert result_item["content"] is not None, "Content should not be None"
assert isinstance(result_item["content"], str), "Content should be a string"
assert len(result_item["content"].strip()) > 0, "Content should not be empty"
assert result_item["similarity_score"] >= 0.0
assert isinstance(result_item["metadata"], dict)
# Step 4: Performance validation
search_start = time.time()
for _ in range(10): # 10 consecutive searches
self.search_service.search("employee policy", top_k=3)
avg_search_time = (time.time() - search_start) / 10
assert avg_search_time < 1, f"Average search time {avg_search_time:.3f}s exceeds 1s threshold"
def _get_related_terms(self, query: str) -> List[str]:
"""Get related terms for semantic matching validation."""
related_terms_map = {
"remote work": ["telecommute", "home office", "wfh", "flexible"],
"benefits": ["health insurance", "medical", "dental", "retirement"],
"vacation": ["pto", "time off", "leave", "holiday"],
"security": ["password", "access", "data protection", "privacy"],
"performance": ["review", "evaluation", "feedback", "assessment"],
}
query_lower = query.lower()
for key, terms in related_terms_map.items():
if key in query_lower:
return terms
return []
def _get_database_size(self) -> float:
"""Get approximate database size in MB."""
total_size = 0
for root, _, files in os.walk(self.test_dir):
for file in files:
file_path = os.path.join(root, file)
if os.path.exists(file_path):
total_size += os.path.getsize(file_path)
return total_size / (1024 * 1024) # Convert to MB
def test_performance_benchmarks(self):
"""Generate and validate performance benchmarks."""
# Run complete pipeline with timing
synthetic_dir = "synthetic_policies"
start_time = time.time()
result = self.ingestion_pipeline.process_directory_with_embeddings(synthetic_dir)
total_time = time.time() - start_time
# Collect comprehensive metrics
benchmarks = {
"ingestion_total_time": total_time,
"chunks_processed": result["chunks_processed"],
"processing_rate_chunks_per_second": result["chunks_processed"] / total_time,
"database_size_mb": self._get_database_size(),
}
# Search performance benchmarks
search_times = []
for query in self.TEST_QUERIES[:5]:
start = time.time()
self.search_service.search(query, top_k=5)
search_times.append(time.time() - start)
benchmarks["avg_search_time"] = sum(search_times) / len(search_times)
benchmarks["max_search_time"] = max(search_times)
benchmarks["min_search_time"] = min(search_times)
# Store benchmarks for reporting
self.performance_metrics.update(benchmarks)
# Validate benchmarks meet thresholds
assert benchmarks["processing_rate_chunks_per_second"] >= 1
assert benchmarks["avg_search_time"] <= 2
assert benchmarks["max_search_time"] <= 5
# Print benchmarks for documentation
print("\n=== Phase 2B Performance Benchmarks ===")
for metric, value in benchmarks.items():
if "time" in metric:
print(f"{metric}: {value:.3f}s")
elif "rate" in metric:
print(f"{metric}: {value:.2f}")
elif "size" in metric:
print(f"{metric}: {value:.2f}MB")
else:
print(f"{metric}: {value}")
if __name__ == "__main__":
# Run tests with verbose output for documentation
pytest.main([__file__, "-v", "-s"])