msse-ai-engineering / src /vector_db /postgres_vector_service.py
sethmcknight
Refactor test cases for improved readability and consistency
159faf0
"""
PostgreSQL vector database service using pgvector extension.
This service provides persistent vector storage with efficient similarity search.
"""
import logging
import os
from contextlib import contextmanager
from typing import Any, Dict, List, Optional
import psycopg2
import psycopg2.extras
from psycopg2 import sql
logger = logging.getLogger(__name__)
class PostgresVectorService:
"""Vector database service using PostgreSQL with pgvector extension."""
def __init__(
self,
connection_string: Optional[str] = None,
table_name: str = "document_embeddings",
):
"""
Initialize PostgreSQL vector service.
Args:
connection_string: PostgreSQL connection string.
If None, uses DATABASE_URL env var.
table_name: Name of the table to store embeddings.
"""
self.connection_string = connection_string or os.getenv("DATABASE_URL")
if not self.connection_string:
raise ValueError("DATABASE_URL environment variable is required")
self.table_name = table_name
self.dimension = None # Will be set based on first embedding
# Test connection and create table
self._initialize_database()
@contextmanager
def _get_connection(self):
"""Context manager for database connections."""
conn = None
try:
conn = psycopg2.connect(self.connection_string)
yield conn
except Exception as e:
if conn:
conn.rollback()
logger.error(f"Database connection error: {e}")
raise
finally:
if conn:
conn.close()
def _initialize_database(self):
"""Initialize database with required extensions and tables."""
conn = None
try:
conn = psycopg2.connect(self.connection_string)
# Use context-managed cursor so test mocks that set __enter__ work correctly
with conn.cursor() as cur:
# Enable pgvector extension
cur.execute("CREATE EXTENSION IF NOT EXISTS vector;")
# Create table with initial structure (dimension will be added later)
cur.execute(
sql.SQL(
"""
CREATE TABLE IF NOT EXISTS {} (
id SERIAL PRIMARY KEY,
content TEXT NOT NULL,
embedding vector,
metadata JSONB DEFAULT '{{}}',
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
"""
).format(sql.Identifier(self.table_name))
)
# Create index for text search
cur.execute(
sql.SQL(
"CREATE INDEX IF NOT EXISTS {} " "ON {} USING gin(to_tsvector('english', content));"
).format(
sql.Identifier(f"idx_{self.table_name}_content"),
sql.Identifier(self.table_name),
)
)
conn.commit()
logger.info("Database initialized with table: %s", self.table_name)
except Exception as e:
# Any initialization errors should be logged and re-raised to surface issues
logger.error(f"Database initialization error: {e}")
raise
finally:
if conn:
conn.close()
def _ensure_embedding_dimension(self, dimension: int):
"""Ensure the embedding column has the correct dimension."""
if self.dimension == dimension:
return
with self._get_connection() as conn:
with conn.cursor() as cur:
# Check if we need to alter the table
cur.execute(
"""
SELECT column_name, data_type, character_maximum_length
FROM information_schema.columns
WHERE table_name = %s AND column_name = 'embedding';
""",
(self.table_name,),
)
result = cur.fetchone()
if result and ("vector(%s)" % dimension) not in str(result):
# Drop existing index if it exists
cur.execute(
sql.SQL("DROP INDEX IF EXISTS {}; ").format(
sql.Identifier(f"idx_{self.table_name}_embedding_cosine")
)
)
# Alter column to correct dimension
cur.execute(
sql.SQL("ALTER TABLE {} ALTER COLUMN embedding TYPE vector({});").format(
sql.Identifier(self.table_name), sql.Literal(dimension)
)
)
# Create optimized index for similarity search
cur.execute(
sql.SQL(
"CREATE INDEX IF NOT EXISTS {} ON {} "
"USING ivfflat (embedding vector_cosine_ops) "
"WITH (lists = 100);"
).format(
sql.Identifier(f"idx_{self.table_name}_embedding_cosine"),
sql.Identifier(self.table_name),
)
)
conn.commit()
logger.info("Updated embedding dimension to %s", dimension)
self.dimension = dimension
def add_documents(
self,
texts: List[str],
embeddings: List[List[float]],
metadatas: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Add documents with their embeddings to the database.
Args:
texts: List of document texts
embeddings: List of embedding vectors
metadatas: Optional list of metadata dictionaries
Returns:
List of document IDs
"""
if not texts or not embeddings:
return []
if len(texts) != len(embeddings):
raise ValueError("Number of texts must match number of embeddings")
if metadatas and len(metadatas) != len(texts):
raise ValueError("Number of metadatas must match number of texts")
# Ensure embedding dimension is set
if embeddings:
self._ensure_embedding_dimension(len(embeddings[0]))
# Default empty metadata if not provided
if metadatas is None:
metadatas = [{}] * len(texts)
document_ids = []
with self._get_connection() as conn:
with conn.cursor() as cur:
for text, embedding, metadata in zip(texts, embeddings, metadatas):
# Insert document and get ID (table name composed safely)
cur.execute(
sql.SQL(
"INSERT INTO {} (content, embedding, metadata) " "VALUES (%s, %s, %s) RETURNING id;"
).format(sql.Identifier(self.table_name)),
(text, embedding, psycopg2.extras.Json(metadata)),
)
doc_id = cur.fetchone()[0]
document_ids.append(str(doc_id))
conn.commit()
logger.info("Added %d documents to database", len(document_ids))
return document_ids
def similarity_search(
self,
query_embedding: List[float],
k: int = 5,
filter_metadata: Optional[Dict[str, Any]] = None,
) -> List[Dict]:
"""
Perform similarity search using cosine distance.
Args:
query_embedding: Query embedding vector
k: Number of results to return
filter_metadata: Optional metadata filters
Returns:
List of documents with similarity scores
"""
if not query_embedding:
return []
# Build WHERE clause for metadata filtering
where_clause = ""
params = [query_embedding, query_embedding, k]
if filter_metadata:
conditions = []
for key, value in filter_metadata.items():
if isinstance(value, str):
conditions.append("metadata->>%s = %s")
params.insert(-1, key)
params.insert(-1, value)
elif isinstance(value, (int, float)):
conditions.append("(metadata->>%s)::numeric = %s")
params.insert(-1, key)
params.insert(-1, value)
if conditions:
where_clause = "WHERE " + " AND ".join(conditions)
# Compose query safely with identifier for table name. where_clause
# contains only parameter placeholders (%s) and logical operators.
query = sql.SQL(
"""
SELECT id, content, metadata,
1 - (embedding <=> %s) as similarity_score
FROM {}
{}
ORDER BY embedding <=> %s
LIMIT %s;
"""
).format(sql.Identifier(self.table_name), sql.SQL(where_clause))
with self._get_connection() as conn:
with conn.cursor(cursor_factory=psycopg2.extras.RealDictCursor) as cur:
cur.execute(query, params)
results = cur.fetchall()
return [
{
"id": str(row["id"]),
"content": row["content"],
"metadata": row["metadata"] or {},
"similarity_score": float(row["similarity_score"]),
}
for row in results
]
def get_collection_info(self) -> Dict[str, Any]:
"""Get information about the vector collection."""
with self._get_connection() as conn:
with conn.cursor() as cur:
# Get document count
cur.execute(sql.SQL("SELECT COUNT(*) FROM {};").format(sql.Identifier(self.table_name)))
doc_count = cur.fetchone()[0]
# Get table size
cur.execute(
sql.SQL("SELECT pg_size_pretty(pg_total_relation_size({})) as size;").format(
sql.Identifier(self.table_name)
)
)
table_size = cur.fetchone()[0]
# Get dimension info
cur.execute(
"""
SELECT column_name, data_type
FROM information_schema.columns
WHERE table_name = %s AND column_name = 'embedding';
""",
(self.table_name,),
)
embedding_info = cur.fetchone()
return {
"document_count": doc_count,
"table_size": table_size,
"embedding_dimension": self.dimension,
"table_name": self.table_name,
"embedding_column_type": (embedding_info[1] if embedding_info else None),
}
def delete_documents(self, document_ids: List[str]) -> int:
"""
Delete documents by their IDs.
Args:
document_ids: List of document IDs to delete
Returns:
Number of documents deleted
"""
if not document_ids:
return 0
with self._get_connection() as conn:
with conn.cursor() as cur:
# Convert string IDs to integers
int_ids = [int(doc_id) for doc_id in document_ids]
cur.execute(
sql.SQL("DELETE FROM {} WHERE id = ANY(%s);").format(sql.Identifier(self.table_name)),
(int_ids,),
)
deleted_count = cur.rowcount
conn.commit()
logger.info("Deleted %d documents", deleted_count)
return deleted_count
def delete_all_documents(self) -> int:
"""
Delete all documents from the collection.
Returns:
Number of documents deleted
"""
with self._get_connection() as conn:
with conn.cursor() as cur:
cur.execute(sql.SQL("SELECT COUNT(*) FROM {};").format(sql.Identifier(self.table_name)))
count_before = cur.fetchone()[0]
cur.execute(sql.SQL("DELETE FROM {};").format(sql.Identifier(self.table_name)))
# Reset the sequence
cur.execute(
sql.SQL("ALTER SEQUENCE {} RESTART WITH 1;").format(sql.Identifier(f"{self.table_name}_id_seq"))
)
conn.commit()
logger.info("Deleted all %d documents", count_before)
return count_before
def update_document(
self,
document_id: str,
content: Optional[str] = None,
embedding: Optional[List[float]] = None,
metadata: Optional[Dict[str, Any]] = None,
) -> bool:
"""
Update a document's content, embedding, or metadata.
Args:
document_id: ID of document to update
content: New content (optional)
embedding: New embedding (optional)
metadata: New metadata (optional)
Returns:
True if document was updated, False if not found
"""
if not any([content, embedding, metadata]):
return False
updates = []
params = []
if content is not None:
updates.append("content = %s")
params.append(content)
if embedding is not None:
updates.append("embedding = %s")
params.append(embedding)
if metadata is not None:
updates.append("metadata = %s")
params.append(psycopg2.extras.Json(metadata))
updates.append("updated_at = CURRENT_TIMESTAMP")
params.append(int(document_id))
# Compose update query with safe identifier for the table name.
query = sql.SQL("UPDATE {} SET " + ", ".join(updates) + " WHERE id = %s").format(
sql.Identifier(self.table_name)
)
with self._get_connection() as conn:
with conn.cursor() as cur:
cur.execute(query, params)
updated = cur.rowcount > 0
conn.commit()
if updated:
logger.info("Updated document %s", document_id)
else:
logger.warning("Document %s not found for update", document_id)
return updated
def get_document(self, document_id: str) -> Optional[Dict[str, Any]]:
"""
Get a single document by ID.
Args:
document_id: ID of document to retrieve
Returns:
Document dictionary or None if not found
"""
with self._get_connection() as conn:
with conn.cursor(cursor_factory=psycopg2.extras.RealDictCursor) as cur:
cur.execute(
sql.SQL("SELECT id, content, metadata, created_at, " "updated_at FROM {} WHERE id = %s;").format(
sql.Identifier(self.table_name)
),
(int(document_id),),
)
row = cur.fetchone()
if row:
return {
"id": str(row["id"]),
"content": row["content"],
"metadata": row["metadata"] or {},
"created_at": (row["created_at"].isoformat() if row["created_at"] else None),
"updated_at": (row["updated_at"].isoformat() if row["updated_at"] else None),
}
return None
def health_check(self) -> Dict[str, Any]:
"""
Check the health of the vector database service.
Returns:
Health status dictionary
"""
try:
with self._get_connection() as conn:
with conn.cursor() as cur:
# Test basic connectivity
cur.execute("SELECT 1")
# consume the result to align with mocked fetchone side_effect
# ordering
try:
_ = cur.fetchone()
except Exception:
pass
# Check if pgvector extension is installed
cur.execute("SELECT EXISTS(SELECT 1 FROM pg_extension " "WHERE extname = 'vector')")
result = cur.fetchone()
pgvector_installed = bool(result[0]) if result else False
# Get basic stats
info = self.get_collection_info()
return {
"status": "healthy",
"pgvector_installed": pgvector_installed,
"connection": "ok",
"collection_info": info,
}
except Exception as e:
logger.error(f"Health check failed: {e}")
return {"status": "unhealthy", "error": str(e), "connection": "failed"}