msse-ai-engineering / src /rag /enhanced_rag_pipeline.py
sethmcknight
Refactor test cases for improved readability and consistency
159faf0
"""
Enhanced RAG Pipeline with Guardrails Integration
This module extends the existing RAG pipeline with comprehensive
guardrails for response quality and safety validation.
"""
import logging
import time
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
from ..guardrails import GuardrailsResult, GuardrailsSystem
from .rag_pipeline import RAGConfig, RAGPipeline, RAGResponse
logger = logging.getLogger(__name__)
@dataclass
class EnhancedRAGResponse(RAGResponse):
"""Enhanced RAG response with guardrails metadata."""
guardrails_approved: bool = True
guardrails_confidence: float = 1.0
safety_passed: bool = True
quality_score: float = 1.0
guardrails_warnings: Optional[List[str]] = None
guardrails_fallbacks: Optional[List[str]] = None
def __post_init__(self):
if self.guardrails_warnings is None:
self.guardrails_warnings = []
if self.guardrails_fallbacks is None:
self.guardrails_fallbacks = []
class EnhancedRAGPipeline:
"""
Enhanced RAG pipeline with integrated guardrails system.
Extends the base RAG pipeline with:
- Comprehensive response validation
- Content safety filtering
- Quality scoring and metrics
- Source attribution and citations
- Error handling and fallbacks
"""
def __init__(
self,
base_pipeline: RAGPipeline,
guardrails_config: Optional[Dict[str, Any]] = None,
):
"""
Initialize enhanced RAG pipeline.
Args:
base_pipeline: Base RAG pipeline instance
guardrails_config: Configuration for guardrails system
"""
self.base_pipeline = base_pipeline
self.guardrails = GuardrailsSystem(guardrails_config)
logger.info("EnhancedRAGPipeline initialized with guardrails")
def generate_answer(self, question: str) -> EnhancedRAGResponse:
"""
Generate answer with comprehensive guardrails validation.
Args:
question: User's question about corporate policies
Returns:
EnhancedRAGResponse with validation and safety checks
"""
start_time = time.time()
try:
# Step 1: Generate initial response using base pipeline
base_response = self.base_pipeline.generate_answer(question)
if not base_response.success:
return self._create_enhanced_response_from_base(base_response)
# Step 2: Apply comprehensive guardrails validation
guardrails_result = self.guardrails.validate_response(
response=base_response.answer,
query=question,
sources=base_response.sources,
context=None, # Could be enhanced with additional context
)
# Step 3: Create enhanced response based on guardrails result
if guardrails_result.is_approved:
# Use enhanced response with improved citations
enhanced_answer = guardrails_result.enhanced_response
# Update confidence based on guardrails assessment
enhanced_confidence = (base_response.confidence + guardrails_result.confidence_score) / 2
return EnhancedRAGResponse(
answer=enhanced_answer,
sources=base_response.sources,
confidence=enhanced_confidence,
processing_time=time.time() - start_time,
llm_provider=base_response.llm_provider,
llm_model=base_response.llm_model,
context_length=base_response.context_length,
search_results_count=base_response.search_results_count,
success=True,
error_message=None,
# Guardrails metadata
guardrails_approved=True,
guardrails_confidence=guardrails_result.confidence_score,
safety_passed=guardrails_result.safety_result.is_safe,
quality_score=guardrails_result.quality_score.overall_score,
guardrails_warnings=guardrails_result.warnings,
guardrails_fallbacks=guardrails_result.fallbacks_applied,
)
else:
# Response was rejected by guardrails
rejection_reason = self._format_rejection_reason(guardrails_result)
return EnhancedRAGResponse(
answer=rejection_reason,
sources=[],
confidence=0.0,
processing_time=time.time() - start_time,
llm_provider=base_response.llm_provider,
llm_model=base_response.llm_model,
context_length=0,
search_results_count=0,
success=False,
error_message="Response rejected by guardrails",
# Guardrails metadata
guardrails_approved=False,
guardrails_confidence=guardrails_result.confidence_score,
safety_passed=guardrails_result.safety_result.is_safe,
quality_score=guardrails_result.quality_score.overall_score,
guardrails_warnings=guardrails_result.warnings + [f"Rejected: {rejection_reason}"],
guardrails_fallbacks=guardrails_result.fallbacks_applied,
)
except Exception as e:
logger.error(f"Enhanced RAG pipeline error: {e}")
# Fallback to base pipeline response if available
try:
base_response = self.base_pipeline.generate_answer(question)
if base_response.success:
# Create enhanced response with error warning
enhanced = self._create_enhanced_response_from_base(base_response)
enhanced.error_message = f"Guardrails validation failed: {str(e)}"
if enhanced.guardrails_warnings is not None:
enhanced.guardrails_warnings.append("Guardrails validation failed")
return enhanced
except Exception:
pass
# Final fallback
return EnhancedRAGResponse(
answer=(
"I apologize, but I encountered an error processing your question. "
"Please try again or contact support if the issue persists."
),
sources=[],
confidence=0.0,
processing_time=time.time() - start_time,
llm_provider="error",
llm_model="error",
context_length=0,
search_results_count=0,
success=False,
error_message=f"Enhanced pipeline error: {str(e)}",
guardrails_approved=False,
guardrails_confidence=0.0,
safety_passed=False,
quality_score=0.0,
guardrails_warnings=[f"Pipeline error: {str(e)}"],
)
def _create_enhanced_response_from_base(self, base_response: RAGResponse) -> EnhancedRAGResponse:
"""Create enhanced response from base response."""
return EnhancedRAGResponse(
answer=base_response.answer,
sources=base_response.sources,
confidence=base_response.confidence,
processing_time=base_response.processing_time,
llm_provider=base_response.llm_provider,
llm_model=base_response.llm_model,
context_length=base_response.context_length,
search_results_count=base_response.search_results_count,
success=base_response.success,
error_message=base_response.error_message,
# Default guardrails values (bypassed)
guardrails_approved=True,
guardrails_confidence=0.5,
safety_passed=True,
quality_score=0.5,
guardrails_warnings=["Guardrails bypassed due to base pipeline issue"],
guardrails_fallbacks=["base_pipeline_fallback"],
)
def _format_rejection_reason(self, guardrails_result: GuardrailsResult) -> str:
"""Format user-friendly rejection reason."""
if not guardrails_result.safety_result.is_safe:
return (
"I cannot provide this response due to safety concerns. "
"Please rephrase your question or contact HR for assistance."
)
if guardrails_result.quality_score.overall_score < 0.5:
low_quality_msg = (
"I couldn't generate a sufficiently detailed response to your "
"question. Please try rephrasing your question or contact HR "
"for more specific guidance."
)
return low_quality_msg
if not guardrails_result.citations:
return (
"I couldn't find adequate source documentation to support a response. "
"Please contact HR or check our policy documentation directly."
)
return (
"I couldn't provide a complete response to your question. "
"Please contact HR for assistance or try rephrasing your question."
)
def get_health_status(self) -> Dict[str, Any]:
"""Get health status of enhanced pipeline."""
base_health = {
"base_pipeline": "healthy", # Assume healthy for now
"llm_service": "healthy",
"search_service": "healthy",
}
guardrails_health = self.guardrails.get_system_health()
overall_status = "healthy" if guardrails_health["status"] == "healthy" else "degraded"
return {
"status": overall_status,
"base_pipeline": base_health,
"guardrails": guardrails_health,
}
@property
def config(self) -> RAGConfig:
"""Access base pipeline configuration."""
return self.base_pipeline.config
def validate_response_only(self, response: str, query: str, sources: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Validate a response using only guardrails (without generating).
Useful for testing and external validation.
"""
guardrails_result = self.guardrails.validate_response(response=response, query=query, sources=sources)
return {
"approved": guardrails_result.is_approved,
"confidence": guardrails_result.confidence_score,
"safety_result": {
"is_safe": guardrails_result.safety_result.is_safe,
"risk_level": guardrails_result.safety_result.risk_level,
"issues": guardrails_result.safety_result.issues_found,
},
"quality_score": {
"overall": guardrails_result.quality_score.overall_score,
"relevance": guardrails_result.quality_score.relevance_score,
"completeness": guardrails_result.quality_score.completeness_score,
"coherence": guardrails_result.quality_score.coherence_score,
"source_fidelity": (guardrails_result.quality_score.source_fidelity_score),
},
"citations": [
{
"document": citation.document,
"confidence": citation.confidence,
"excerpt": citation.excerpt,
}
for citation in guardrails_result.citations
],
"recommendations": guardrails_result.recommendations,
"warnings": guardrails_result.warnings,
"processing_time": guardrails_result.processing_time,
}