msse-ai-engineering / src /app_factory.py
sethmcknight
fix: Add detailed logging and improved locking for ingestion startup
3916e13
"""
Application factory for creating and configuring the Flask app.
This approach allows for easier testing and management of application state.
"""
import concurrent.futures
import logging
import os
import time
from typing import Any, Dict
from dotenv import load_dotenv
from flask import Flask, jsonify, render_template, request
logger = logging.getLogger(__name__)
# Load environment variables from .env file
load_dotenv()
class InitializationTimeoutError(Exception):
"""Custom exception for initialization timeouts."""
pass
def ensure_embeddings_on_startup():
"""
Ensure embeddings exist and have the correct dimension on app startup.
This is critical for Hugging Face deployments where the vector store needs to be built on startup.
Uses a file-based lock to prevent race conditions between workers.
"""
import fcntl
logging.info(f"[PID {os.getpid()}] Starting ensure_embeddings_on_startup function")
lock_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "data", "locks")
if not os.path.exists(lock_dir):
try:
os.makedirs(lock_dir)
logging.info(f"[PID {os.getpid()}] Created lock directory: {lock_dir}")
except Exception as e:
logging.error(f"[PID {os.getpid()}] Failed to create lock directory: {e}")
return
lock_file = os.path.join(lock_dir, "ingestion.lock")
lock_timeout = 300 # 5 minutes for Hugging Face with more resources
logging.info(f"[PID {os.getpid()}] Attempting to acquire lock: {lock_file}")
# Use proper file locking with fcntl for better reliability
try:
lock_fd = open(lock_file, "w")
fcntl.flock(lock_fd.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB)
logging.info(f"[PID {os.getpid()}] Successfully acquired exclusive lock")
# Write PID to lock file for debugging
lock_fd.write(f"{os.getpid()}\n")
lock_fd.flush()
except (IOError, OSError):
logging.info(f"[PID {os.getpid()}] Lock is held by another process, waiting...")
lock_fd.close()
# Wait for lock to be released
start_time = time.time()
while time.time() - start_time < lock_timeout:
try:
lock_fd = open(lock_file, "w")
fcntl.flock(lock_fd.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB)
logging.info(f"[PID {os.getpid()}] Lock acquired after waiting {time.time() - start_time:.1f}s")
break
except (IOError, OSError):
lock_fd.close()
time.sleep(2)
else:
logging.error(f"[PID {os.getpid()}] Timeout waiting for lock after {lock_timeout}s")
return
try:
logging.info(f"[PID {os.getpid()}] Lock acquired, starting ingestion process")
from src.config import (
COLLECTION_NAME,
CORPUS_DIRECTORY,
DEFAULT_CHUNK_SIZE,
DEFAULT_OVERLAP,
EMBEDDING_DIMENSION,
EMBEDDING_MODEL_NAME,
RANDOM_SEED,
VECTOR_DB_PERSIST_PATH,
)
from src.ingestion.ingestion_pipeline import IngestionPipeline
from src.vector_store.vector_db import VectorDatabase
logging.info(f"[PID {os.getpid()}] Imported modules successfully")
logging.info(f"[PID {os.getpid()}] Checking vector store at: {VECTOR_DB_PERSIST_PATH}")
logging.info(f"[PID {os.getpid()}] Collection name: {COLLECTION_NAME}")
logging.info(f"[PID {os.getpid()}] Corpus directory: {CORPUS_DIRECTORY}")
logging.info(f"[PID {os.getpid()}] Expected embedding dimension: {EMBEDDING_DIMENSION}")
# Initialize vector database to check its state
try:
vector_db = VectorDatabase(VECTOR_DB_PERSIST_PATH, COLLECTION_NAME)
logging.info(f"[PID {os.getpid()}] Vector database initialized successfully")
except Exception as e:
logging.error(f"[PID {os.getpid()}] Failed to initialize vector database: {e}")
raise
# Check if embeddings exist and have correct dimension
try:
current_count = vector_db.get_count()
current_dimension = vector_db.get_embedding_dimension()
logging.info(
f"[PID {os.getpid()}] Current database state: {current_count} embeddings, dimension {current_dimension}"
)
has_valid = vector_db.has_valid_embeddings(EMBEDDING_DIMENSION)
logging.info(f"[PID {os.getpid()}] Has valid embeddings: {has_valid}")
except Exception as e:
logging.error(f"[PID {os.getpid()}] Failed to check vector database state: {e}")
# Assume we need to rebuild
has_valid = False
current_count = 0
current_dimension = 0
if not has_valid:
logging.warning(
f"[PID {os.getpid()}] Vector store is empty or has wrong dimension. "
f"Expected: {EMBEDDING_DIMENSION}, Current: {current_dimension}, "
f"Count: {current_count}"
)
logging.info(f"[PID {os.getpid()}] Starting ingestion pipeline with model: {EMBEDDING_MODEL_NAME}")
# Check if corpus directory exists
if not os.path.exists(CORPUS_DIRECTORY):
logging.error(f"[PID {os.getpid()}] Corpus directory does not exist: {CORPUS_DIRECTORY}")
return
corpus_files = os.listdir(CORPUS_DIRECTORY)
logging.info(f"[PID {os.getpid()}] Found {len(corpus_files)} files in corpus directory")
# Run ingestion pipeline to rebuild embeddings
try:
ingestion_pipeline = IngestionPipeline(
chunk_size=DEFAULT_CHUNK_SIZE,
overlap=DEFAULT_OVERLAP,
seed=RANDOM_SEED,
store_embeddings=True,
)
logging.info(f"[PID {os.getpid()}] Ingestion pipeline created successfully")
except Exception as e:
logging.error(f"[PID {os.getpid()}] Failed to create ingestion pipeline: {e}")
raise
# Process the corpus directory
try:
logging.info(f"[PID {os.getpid()}] Starting to process corpus directory...")
results = ingestion_pipeline.process_directory(CORPUS_DIRECTORY)
logging.info(f"[PID {os.getpid()}] Process directory completed, got results: {type(results)}")
except Exception as e:
logging.error(f"[PID {os.getpid()}] Failed during directory processing: {e}", exc_info=True)
raise
if not results or len(results) == 0:
logging.error(
f"[PID {os.getpid()}] Ingestion failed or processed 0 chunks. "
"Please check the corpus directory and ingestion pipeline for errors."
)
else:
logging.info(f"[PID {os.getpid()}] Ingestion completed successfully: {len(results)} chunks processed")
# Verify the embeddings were actually stored
try:
final_count = vector_db.get_count()
final_dimension = vector_db.get_embedding_dimension()
logging.info(
f"[PID {os.getpid()}] Final database state: {final_count} embeddings, "
f"dimension {final_dimension}"
)
except Exception as e:
logging.error(f"[PID {os.getpid()}] Failed to verify final database state: {e}")
else:
logging.info(
f"[PID {os.getpid()}] Vector store is valid with {current_count} embeddings "
f"of dimension {current_dimension}"
)
except Exception as e:
logging.error(f"[PID {os.getpid()}] Failed to ensure embeddings on startup: {e}", exc_info=True)
# Don't crash the app, but log the error
# The app will still start but searches may fail
finally:
# Release lock
try:
fcntl.flock(lock_fd.fileno(), fcntl.LOCK_UN)
lock_fd.close()
logging.info(f"[PID {os.getpid()}] Released ingestion lock")
except Exception as e:
logging.error(f"[PID {os.getpid()}] Failed to release lock: {e}")
def create_app(
config_name: str = "default",
initialize_vectordb: bool = True,
initialize_llm: bool = True,
) -> Flask:
"""
Create the Flask application with all necessary configuration.
Args:
config_name: Configuration name to use (default, test, production)
initialize_vectordb: Whether to initialize vector database connection
initialize_llm: Whether to initialize LLM
Returns:
Configured Flask application
"""
try:
# Initialize Render-specific monitoring if running on Render
# (optional - don't break CI)
is_render = os.environ.get("RENDER", "0") == "1"
memory_monitoring_enabled = False
# Only enable memory monitoring if explicitly requested or on Render
if is_render or os.environ.get("ENABLE_MEMORY_MONITORING", "0") == "1":
try:
from src.utils.memory_utils import (
clean_memory,
log_memory_checkpoint,
start_periodic_memory_logger,
start_tracemalloc,
)
# Initialize advanced memory diagnostics if enabled
try:
start_tracemalloc()
logger.info("tracemalloc started successfully")
except Exception as e:
logger.warning(f"Failed to start tracemalloc: {e}")
# Use Render-specific monitoring if running on Render
if is_render:
try:
from src.utils.render_monitoring import init_render_monitoring
# Set shorter intervals for memory logging on Render
init_render_monitoring(log_interval=10)
logger.info("Render-specific memory monitoring activated")
except Exception as e:
logger.warning(f"Failed to initialize Render monitoring: {e}")
else:
# Use standard memory logging for local development
try:
start_periodic_memory_logger(interval_seconds=int(os.getenv("MEMORY_LOG_INTERVAL", "60")))
logger.info("Periodic memory logging started")
except Exception as e:
logger.warning(f"Failed to start periodic memory logger: {e}")
# Clean memory at start
try:
clean_memory("App startup")
log_memory_checkpoint("post_startup_cleanup")
logger.info("Initial memory cleanup completed")
except Exception as e:
logger.warning(f"Failed to clean memory at startup: {e}")
memory_monitoring_enabled = True
except ImportError as e:
logger.warning(f"Memory monitoring dependencies not available: {e}")
except Exception as e:
logger.warning(f"Memory monitoring initialization failed: {e}")
else:
logger.info("Memory monitoring disabled (not on Render and not explicitly enabled)")
logger.info(
"App factory initialization complete (memory_monitoring=%s)",
memory_monitoring_enabled,
)
# Proactively disable ChromaDB telemetry
os.environ.setdefault("ANONYMIZED_TELEMETRY", "False")
os.environ.setdefault("CHROMA_TELEMETRY", "False")
# Attempt to configure chromadb and monkeypatch telemetry
try:
import chromadb
try:
chromadb.configure(anonymized_telemetry=False)
except Exception:
pass # Non-fatal
try:
from chromadb.telemetry.product import posthog as _posthog
if hasattr(_posthog, "capture"):
setattr(_posthog, "capture", lambda *args, **kwargs: None)
if hasattr(_posthog, "Posthog") and hasattr(_posthog.Posthog, "capture"):
setattr(_posthog.Posthog, "capture", lambda *args, **kwargs: None)
except Exception:
pass # Non-fatal
except Exception:
pass # chromadb not installed
# Get the absolute path to the project root directory (parent of src)
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
template_dir = os.path.join(project_root, "templates")
static_dir = os.path.join(project_root, "static")
app = Flask(__name__, template_folder=template_dir, static_folder=static_dir)
# Force garbage collection after initialization
# (only if memory monitoring is enabled)
if memory_monitoring_enabled:
try:
from src.utils.memory_utils import clean_memory
clean_memory("Post-initialization")
except Exception as e:
logger.warning(f"Post-initialization memory cleanup failed: {e}")
# Add memory circuit breaker
# Only add memory monitoring middleware if memory monitoring is enabled
if memory_monitoring_enabled:
@app.before_request
def check_memory():
try:
# Ensure we have the necessary functions imported
from src.utils.memory_utils import clean_memory, log_memory_usage
try:
memory_mb = log_memory_usage("Before request")
if memory_mb and memory_mb > 450: # Critical threshold for 512MB limit
clean_memory("Emergency cleanup")
if memory_mb > 480: # Near crash
return (
jsonify(
{
"status": "error",
"message": "Server too busy, try again later",
}
),
503,
)
except Exception as e:
# Don't let memory monitoring crash the app
logger.warning(f"Memory monitoring failed: {e}")
except ImportError as e:
# Memory utils module not available
logger.warning(f"Memory monitoring not available: {e}")
except Exception as e:
# Other errors shouldn't crash the app
logger.warning(f"Memory monitoring error: {e}")
@app.before_request
def soft_ceiling():
"""Block high-memory expensive endpoints when near hard limit."""
path = request.path
if path in ("/ingest", "/search"):
try:
from src.utils.memory_utils import get_memory_usage
mem = get_memory_usage()
if mem and mem > 470: # soft ceiling
return (
jsonify(
{
"status": "error",
"message": "Server memory high; try again later",
"memory_mb": mem,
}
),
503,
)
except Exception:
pass
# Lazy-load services to avoid high memory usage at startup
# These will be initialized on the first request to a relevant endpoint
app.config["RAG_PIPELINE"] = None
app.config["INGESTION_PIPELINE"] = None
app.config["SEARCH_SERVICE"] = None
def get_rag_pipeline():
"""
Initialize and cache the RAG pipeline with a timeout.
This prevents blocking the main thread for too long during cold starts.
"""
if app.config.get("RAG_PIPELINE") is not None:
return app.config["RAG_PIPELINE"]
def _init_pipeline():
"""The actual initialization logic."""
from src.config import (
COLLECTION_NAME,
EMBEDDING_BATCH_SIZE,
EMBEDDING_DEVICE,
EMBEDDING_MODEL_NAME,
)
from src.embedding.embedding_service import EmbeddingService
from src.llm.llm_service import LLMService
from src.rag.rag_pipeline import RAGPipeline
from src.search.search_service import SearchService
from src.vector_store.vector_db import create_vector_database
logging.info("RAG pipeline initialization started in worker thread...")
vector_db = create_vector_database(collection_name=COLLECTION_NAME)
embedding_service = EmbeddingService(
model_name=EMBEDDING_MODEL_NAME,
device=EMBEDDING_DEVICE,
batch_size=EMBEDDING_BATCH_SIZE,
)
search_service = SearchService(vector_db, embedding_service)
llm_service = LLMService.from_environment()
pipeline = RAGPipeline(search_service, llm_service)
logging.info("RAG pipeline initialization finished in worker thread.")
return pipeline
timeout = int(os.getenv("RAG_INIT_TIMEOUT", "60"))
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(_init_pipeline)
try:
pipeline = future.result(timeout=timeout)
app.config["RAG_PIPELINE"] = pipeline
return pipeline
except concurrent.futures.TimeoutError:
logging.error(f"RAG pipeline initialization timed out after {timeout}s.")
raise InitializationTimeoutError("Initialization timed out. Please try again in a moment.")
except Exception as e:
logging.error(f"RAG pipeline initialization failed: {e}", exc_info=True)
raise e
def get_ingestion_pipeline(store_embeddings=True):
"""Initialize the ingestion pipeline."""
# Ingestion is request-specific, so we don't cache it
from src.config import (
DEFAULT_CHUNK_SIZE,
DEFAULT_OVERLAP,
EMBEDDING_BATCH_SIZE,
EMBEDDING_DEVICE,
EMBEDDING_MODEL_NAME,
RANDOM_SEED,
)
from src.embedding.embedding_service import EmbeddingService
from src.ingestion.ingestion_pipeline import IngestionPipeline
embedding_service = None
if store_embeddings:
embedding_service = EmbeddingService(
model_name=EMBEDDING_MODEL_NAME,
device=EMBEDDING_DEVICE,
batch_size=EMBEDDING_BATCH_SIZE,
)
return IngestionPipeline(
chunk_size=DEFAULT_CHUNK_SIZE,
overlap=DEFAULT_OVERLAP,
seed=RANDOM_SEED,
store_embeddings=store_embeddings,
embedding_service=embedding_service,
)
def get_search_service():
"""Initialize and cache the search service."""
if app.config.get("SEARCH_SERVICE") is None:
logging.info("Initializing search service for the first time...")
from src.config import (
COLLECTION_NAME,
EMBEDDING_BATCH_SIZE,
EMBEDDING_DEVICE,
EMBEDDING_MODEL_NAME,
VECTOR_DB_PERSIST_PATH,
)
from src.embedding.embedding_service import EmbeddingService
from src.search.search_service import SearchService
from src.utils.memory_utils import MemoryManager
from src.vector_store.vector_db import VectorDatabase
# Use memory manager for this expensive operation
with MemoryManager("search_service_initialization"):
vector_db = VectorDatabase(VECTOR_DB_PERSIST_PATH, COLLECTION_NAME)
embedding_service = EmbeddingService(
model_name=EMBEDDING_MODEL_NAME,
device=EMBEDDING_DEVICE,
batch_size=EMBEDDING_BATCH_SIZE,
)
app.config["SEARCH_SERVICE"] = SearchService(vector_db, embedding_service)
logging.info("Search service initialized.")
return app.config["SEARCH_SERVICE"]
@app.route("/")
def index():
return render_template("chat.html")
# Minimal favicon/apple-touch handlers to eliminate 404 noise without storing binary files.
# Returns a 1x1 transparent PNG generated on the fly (base64 decoded).
import base64
from flask import Response
_TINY_PNG_BASE64 = (
b"iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mP8/x8AAusB9YwWtYkAAAAASUVORK5CYII="
)
def _tiny_png_response():
png_bytes = base64.b64decode(_TINY_PNG_BASE64)
return Response(png_bytes, mimetype="image/png")
@app.route("/favicon.ico")
def favicon(): # pragma: no cover - trivial asset route
return _tiny_png_response()
@app.route("/apple-touch-icon.png")
@app.route("/apple-touch-icon-precomposed.png")
def apple_touch_icon(): # pragma: no cover - trivial asset route
return _tiny_png_response()
@app.route("/management")
def management_dashboard():
"""Document management dashboard"""
return render_template("management.html")
@app.route("/health")
def health():
try:
# Default values in case memory_utils is not available
memory_mb = 0
status = "ok"
try:
from src.utils.memory_utils import get_memory_usage
memory_mb = get_memory_usage()
except Exception as e:
# Don't let memory monitoring failure break health check
logger.warning(f"Memory usage check failed: {e}")
status = "degraded"
# Check LLM availability
llm_available = True
try:
# Quick check for LLM configuration without caching
has_api_keys = bool(os.getenv("OPENROUTER_API_KEY") or os.getenv("GROQ_API_KEY"))
if not has_api_keys:
llm_available = False
except Exception:
llm_available = False
# Add warning if memory usage is high (only when monitoring enabled)
if memory_monitoring_enabled:
if memory_mb > 400: # Warning threshold for 512MB limit
status = "warning"
elif memory_mb > 450: # Critical threshold
status = "critical"
# Degrade status if LLM is not available
if not llm_available:
if status == "ok":
status = "degraded"
response_data = {
"status": status,
"memory_mb": round(memory_mb, 1),
"timestamp": __import__("datetime").datetime.utcnow().isoformat(),
"llm_available": llm_available,
}
# Return 200 for ok/warning/degraded, 503 for critical
status_code = 503 if status == "critical" else 200
return jsonify(response_data), status_code
except Exception as e:
# Last resort error handler
logger.error(f"Health check failed: {e}")
return (
jsonify(
{
"status": "error",
"message": "Health check failed",
"error": str(e),
"timestamp": __import__("datetime").datetime.utcnow().isoformat(),
}
),
500,
)
@app.route("/memory/diagnostics")
def memory_diagnostics():
"""Return detailed memory diagnostics (safe for production use).
Query params:
include_top=1 -> include top allocation traces
limit=N -> number of top allocation entries (default 5)
"""
import tracemalloc
from src.utils.memory_utils import memory_summary
include_top = request.args.get("include_top") in ("1", "true", "True")
try:
limit = int(request.args.get("limit", 5))
except ValueError:
limit = 5
summary = memory_summary()
diagnostics = {
"summary": summary,
"tracemalloc_active": tracemalloc.is_tracing(),
}
if include_top and tracemalloc.is_tracing():
try:
snapshot = tracemalloc.take_snapshot()
stats = snapshot.statistics("lineno")
top_list = []
for stat in stats[: max(1, min(limit, 25))]:
size_mb = stat.size / 1024 / 1024
location = f"{stat.traceback[0].filename}:{stat.traceback[0].lineno}"
top_list.append(
{
"location": location,
"size_mb": round(size_mb, 4),
"count": stat.count,
"repr": str(stat)[:300],
}
)
diagnostics["top_allocations"] = top_list
except Exception as e: # pragma: no cover
diagnostics["top_allocations_error"] = str(e)
return jsonify({"status": "success", "memory": diagnostics})
@app.route("/memory/force-clean", methods=["POST"])
def force_clean():
"""Force a full memory cleanup and return new memory usage."""
from src.utils.memory_utils import force_clean_and_report
try:
data = request.get_json(silent=True) or {}
label = data.get("label", "manual")
if not isinstance(label, str):
label = "manual"
summary = force_clean_and_report(label=str(label))
# Include the label at the top level for test compatibility
return jsonify({"status": "success", "label": str(label), "summary": summary})
except Exception as e:
return jsonify({"status": "error", "message": str(e)})
@app.route("/memory/render-status")
def render_memory_status():
"""Return Render-specific memory monitoring data.
This returns detailed metrics when running on Render.
Otherwise it returns basic memory stats.
"""
try:
# Default basic response for all environments
basic_response = {
"status": "success",
"is_render": False,
"memory_mb": 0,
"timestamp": __import__("datetime").datetime.utcnow().isoformat(),
}
try:
# Try to get basic memory usage
from src.utils.memory_utils import get_memory_usage
basic_response["memory_mb"] = get_memory_usage()
# Try to add summary if available
try:
from src.utils.memory_utils import memory_summary
basic_response["summary"] = memory_summary()
except Exception as e:
basic_response["summary_error"] = str(e)
# If on Render, try to get enhanced metrics
if is_render:
try:
# Import here to avoid errors when not on Render
from src.utils.render_monitoring import (
check_render_memory_thresholds,
get_memory_trends,
)
# Get current memory status with checks
status = check_render_memory_thresholds("api_request")
# Get trend information
trends = get_memory_trends()
# Return structured memory status for Render
return jsonify(
{
"status": "success",
"is_render": True,
"memory_status": status,
"memory_trends": trends,
"render_limit_mb": 512,
}
)
except Exception as e:
basic_response["render_metrics_error"] = str(e)
except Exception as e:
basic_response["memory_utils_error"] = str(e)
# Return basic response with whatever data we could get
return jsonify(basic_response)
except Exception as e:
return jsonify({"status": "error", "message": str(e)})
@app.route("/ingest", methods=["POST"])
def ingest():
try:
from src.config import CORPUS_DIRECTORY
# Use silent=True to avoid exceptions and provide a known dict type
data: Dict[str, Any] = request.get_json(silent=True) or {}
store_embeddings = bool(data.get("store_embeddings", True))
pipeline = get_ingestion_pipeline(store_embeddings)
result = pipeline.process_directory_with_embeddings(CORPUS_DIRECTORY)
# Create response with enhanced information
response = {
"status": result["status"],
"chunks_processed": result["chunks_processed"],
"files_processed": result["files_processed"],
"embeddings_stored": result["embeddings_stored"],
"store_embeddings": result["store_embeddings"],
"message": (
f"Successfully processed {result['chunks_processed']} "
f"chunks from {result['files_processed']} files"
),
}
# Include failed files info if any
if result["failed_files"]:
response["failed_files"] = result["failed_files"]
failed_count = len(result["failed_files"])
response["warnings"] = f"{failed_count} files failed to process"
return jsonify(response)
except Exception as e:
logging.error(f"Ingestion failed: {e}", exc_info=True)
return jsonify({"status": "error", "message": str(e)}), 500
@app.route("/search", methods=["POST"])
def search():
from src.utils.memory_utils import log_memory_usage
try:
log_memory_usage("search_request_start")
# Validate request contains JSON data
if not request.is_json:
return (
jsonify(
{
"status": "error",
"message": "Content-Type must be application/json",
}
),
400,
)
data: Dict[str, Any] = request.get_json() or {}
# Validate required query parameter
query = data.get("query")
if query is None:
return (
jsonify({"status": "error", "message": "Query parameter is required"}),
400,
)
if not isinstance(query, str) or not query.strip():
return (
jsonify(
{
"status": "error",
"message": "Query must be a non-empty string",
}
),
400,
)
# Extract optional parameters with defaults
top_k = data.get("top_k", 5)
threshold = data.get("threshold", 0.3)
# Validate parameters
if not isinstance(top_k, int) or top_k <= 0:
return (
jsonify(
{
"status": "error",
"message": "top_k must be a positive integer",
}
),
400,
)
if not isinstance(threshold, (int, float)) or not (0.0 <= threshold <= 1.0):
return (
jsonify(
{
"status": "error",
"message": "threshold must be a number between 0 and 1",
}
),
400,
)
search_service = get_search_service()
results = search_service.search(query=query.strip(), top_k=top_k, threshold=threshold)
# Format response
response = {
"status": "success",
"query": query.strip(),
"results_count": len(results),
"results": results,
}
return jsonify(response)
except ValueError as e:
return jsonify({"status": "error", "message": str(e)}), 400
except Exception as e:
logging.error(f"Search failed: {e}", exc_info=True)
return (
jsonify({"status": "error", "message": f"Search failed: {str(e)}"}),
500,
)
@app.route("/chat", methods=["POST"])
def chat():
try:
# Validate request contains JSON data
if not request.is_json:
return (
jsonify(
{
"status": "error",
"message": "Content-Type must be application/json",
}
),
400,
)
data: Dict[str, Any] = request.get_json() or {}
# Validate required message parameter and length guard
message = data.get("message")
if message is None:
return (
jsonify({"status": "error", "message": "message parameter is required"}),
400,
)
if not isinstance(message, str) or not message.strip():
return (
jsonify(
{
"status": "error",
"message": "message must be a non-empty string",
}
),
400,
)
# Enforce maximum chat input size to prevent memory spikes
try:
max_chars = int(os.getenv("CHAT_MAX_CHARS", "5000"))
except ValueError:
max_chars = 5000
if len(message) > max_chars:
return (
jsonify(
{
"status": "error",
"message": (f"message too long (>{max_chars} chars); " "please shorten your input"),
}
),
413,
)
# Extract optional parameters
conversation_id = data.get("conversation_id")
include_sources = data.get("include_sources", True)
include_debug = data.get("include_debug", False)
# Let the global error handler handle LLMConfigurationError
rag_pipeline = get_rag_pipeline()
rag_response = rag_pipeline.generate_answer(message.strip())
from src.rag.response_formatter import ResponseFormatter
formatter = ResponseFormatter()
# Format response for API
if include_sources:
formatted_response = formatter.format_api_response(rag_response, include_debug)
else:
formatted_response = formatter.format_chat_response(
rag_response, conversation_id, include_sources=False
)
return jsonify(formatted_response)
except InitializationTimeoutError as e:
return (
jsonify(
{
"status": "error",
"message": "The server is starting up and is not yet ready "
"to handle requests. Please try again in a moment.",
"details": str(e),
}
),
503,
)
except Exception as e:
# Re-raise LLMConfigurationError so our custom error handler can catch it
from src.llm.llm_configuration_error import LLMConfigurationError
if isinstance(e, LLMConfigurationError):
raise e
logging.error(f"Chat failed: {e}", exc_info=True)
return (
jsonify({"status": "error", "message": f"Chat request failed: {str(e)}"}),
500,
)
@app.route("/chat/health")
def chat_health():
try:
# Let the global error handler handle LLMConfigurationError
rag_pipeline = get_rag_pipeline()
health_data = rag_pipeline.health_check()
from src.rag.response_formatter import ResponseFormatter
formatter = ResponseFormatter()
health_response = formatter.create_health_response(health_data)
# Determine HTTP status based on health
if health_data.get("pipeline") == "healthy":
return jsonify(health_response), 200
elif health_data.get("pipeline") == "degraded":
return jsonify(health_response), 200 # Still functional
else:
return jsonify(health_response), 503 # Service unavailable
except Exception as e:
# Re-raise LLMConfigurationError so our custom error handler can catch it
from src.llm.llm_configuration_error import LLMConfigurationError
if isinstance(e, LLMConfigurationError):
raise e
logging.error(f"Chat health check failed: {e}", exc_info=True)
return (
jsonify({"status": "error", "message": f"Health check failed: {str(e)}"}),
500,
)
# Add other non-ML routes directly
@app.route("/chat/suggestions")
def get_query_suggestions():
suggestions = [
"What is our remote work policy?",
"How do I request time off?",
"What are our information security guidelines?",
"How does our expense reimbursement work?",
"Tell me about our diversity and inclusion policy",
"What's the process for employee performance reviews?",
"How do I report an emergency at work?",
"What professional development opportunities are available?",
]
return jsonify({"status": "success", "suggestions": suggestions})
@app.route("/chat/feedback", methods=["POST"])
def submit_feedback():
try:
feedback_data = request.json
if not feedback_data:
return (
jsonify({"status": "error", "message": "No feedback data provided"}),
400,
)
required_fields = ["conversation_id", "message_id", "feedback_type"]
for field in required_fields:
if field not in feedback_data:
return (
jsonify(
{
"status": "error",
"message": f"Missing required field: {field}",
}
),
400,
)
print(f"Received feedback: {feedback_data}")
return jsonify(
{
"status": "success",
"message": "Feedback received",
"feedback": feedback_data,
}
)
except Exception as e:
print(f"Error processing feedback: {str(e)}")
return (
jsonify(
{
"status": "error",
"message": f"Error processing feedback: {str(e)}",
}
),
500,
)
@app.route("/chat/source/<source_id>")
def get_source_document(source_id: str):
try:
from typing import Union
source_map: Dict[str, Dict[str, Union[str, Dict[str, str]]]] = {
"remote_work": {
"content": (
"# Remote Work Policy\n\n"
"Employees may work remotely up to 3 days per week"
" with manager approval."
),
"metadata": {
"filename": "remote_work_policy.md",
"last_updated": "2025-09-15",
},
},
"pto": {
"content": (
"# PTO Policy\n\n"
"Full-time employees receive 20 days of PTO annually, "
"accrued monthly."
),
"metadata": {
"filename": "pto_policy.md",
"last_updated": "2025-08-20",
},
},
"security": {
"content": (
"# Information Security Policy\n\n"
"All employees must use company-approved devices and "
"software for work tasks."
),
"metadata": {
"filename": "information_security_policy.md",
"last_updated": "2025-10-01",
},
},
"expense": {
"content": (
"# Expense Reimbursement\n\n"
"Submit all expense reports within 30 days of incurring "
"the expense."
),
"metadata": {
"filename": "expense_reimbursement_policy.md",
"last_updated": "2025-07-10",
},
},
}
if source_id in source_map:
source_data = source_map[source_id]
return jsonify(
{
"status": "success",
"source_id": source_id,
"content": source_data["content"],
"metadata": source_data["metadata"],
}
)
else:
return (
jsonify(
{
"status": "error",
"message": (f"Source document with ID {source_id} not found"),
}
),
404,
)
except Exception as e:
return (
jsonify(
{
"status": "error",
"message": f"Failed to retrieve source document: {str(e)}",
}
),
500,
)
@app.route("/conversations", methods=["GET"])
def get_conversations():
conversations = [
{
"id": "conv-123456",
"title": "HR Policy Questions",
"timestamp": "2025-10-15T14:30:00Z",
"preview": "What is our remote work policy?",
},
{
"id": "conv-789012",
"title": "Project Planning Queries",
"timestamp": "2025-10-14T09:15:00Z",
"preview": "How do we handle project kickoffs?",
},
{
"id": "conv-345678",
"title": "Security Compliance",
"timestamp": "2025-10-12T16:45:00Z",
"preview": "What are our password requirements?",
},
]
return jsonify({"status": "success", "conversations": conversations})
@app.route("/conversations/<conversation_id>", methods=["GET"])
def get_conversation(conversation_id: str):
try:
from typing import List, Union
if conversation_id == "conv-123456":
messages: List[Dict[str, Union[str, List[Dict[str, str]]]]] = [
{
"id": "msg-111",
"role": "user",
"content": "What is our remote work policy?",
"timestamp": "2025-10-15T14:30:00Z",
},
{
"id": "msg-112",
"role": "assistant",
"content": (
"According to our remote work policy, employees may "
"work up to 3 days per week with manager approval."
),
"timestamp": "2025-10-15T14:30:15Z",
"sources": [{"id": "remote_work", "title": "Remote Work Policy"}],
},
]
else:
return (
jsonify(
{
"status": "error",
"message": f"Conversation {conversation_id} not found",
}
),
404,
)
return jsonify(
{
"status": "success",
"conversation_id": conversation_id,
"messages": messages,
}
)
except Exception as e:
app.logger.error(f"An unexpected error occurred: {e}")
return (
jsonify({"status": "error", "message": "An internal error occurred."}),
500,
)
# Register memory-aware error handlers
from src.utils.error_handlers import register_error_handlers
register_error_handlers(app)
# Ensure embeddings on app startup.
# Embeddings are checked and rebuilt before the app starts serving requests.
# Disabled: Using pre-built embeddings to avoid memory spikes during deployment.
# ensure_embeddings_on_startup()
# Register document management blueprint
try:
from src.document_management.routes import document_bp
app.register_blueprint(document_bp, url_prefix="/api/documents")
logging.info("Document management blueprint registered successfully")
except Exception as e:
logging.warning(f"Failed to register document management blueprint: {e}")
# Use pre-built embeddings by default for reliable deployment
# Only rebuild embeddings if explicitly requested via environment variable
if os.getenv("REBUILD_EMBEDDINGS_ON_START", "false").lower() == "true":
with app.app_context():
logging.info("REBUILD_EMBEDDINGS_ON_START is true, rebuilding embeddings on startup.")
ensure_embeddings_on_startup()
else:
logging.info("Using pre-built embeddings. Set REBUILD_EMBEDDINGS_ON_START=true to rebuild.")
# Add Render-specific memory middleware if running on Render and
# memory monitoring is enabled
if is_render and memory_monitoring_enabled:
try:
# Import locally and alias to avoid redefinition warnings
from src.utils.render_monitoring import (
add_memory_middleware as _add_memory_middleware,
)
_add_memory_middleware(app)
logger.info("Render memory monitoring middleware added")
except Exception as e:
logger.warning(f"Failed to add Render memory middleware: {e}")
return app
except Exception as e:
# This is a critical catch-all for any exception during app creation.
# Logging this as a critical error is essential for debugging startup failures.
logging.critical(f"CRITICAL: App creation failed: {e}", exc_info=True)
# Re-raise the exception to ensure the Gunicorn worker fails loudly
# and the failure is immediately obvious in the logs.
raise