File size: 24,669 Bytes
135f0d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
 
 
 
 
 
159faf0
135f0d6
 
 
 
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
159faf0
135f0d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
"""
Quality Metrics - Response quality scoring algorithms

This module provides comprehensive quality assessment for RAG responses
including relevance, completeness, coherence, and source fidelity scoring.
"""

import logging
import re
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Set, Tuple

logger = logging.getLogger(__name__)


@dataclass
class QualityScore:
    """Comprehensive quality score for RAG response."""

    overall_score: float
    relevance_score: float
    completeness_score: float
    coherence_score: float
    source_fidelity_score: float
    professionalism_score: float

    # Additional metrics
    response_length: int
    citation_count: int
    source_count: int
    confidence_level: str  # "high", "medium", "low"

    # Quality indicators
    meets_threshold: bool
    strengths: List[str]
    weaknesses: List[str]
    recommendations: List[str]


class QualityMetrics:
    """
    Comprehensive quality assessment system for RAG responses.

    Provides detailed scoring across multiple dimensions:
    - Relevance: How well response addresses the query
    - Completeness: Adequacy of information provided
    - Coherence: Logical structure and flow
    - Source Fidelity: Alignment with source documents
    - Professionalism: Appropriate business tone
    """

    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """
        Initialize QualityMetrics with configuration.

        Args:
            config: Configuration dictionary for quality thresholds
        """
        self.config = config or self._get_default_config()
        logger.info("QualityMetrics initialized")

    def _get_default_config(self) -> Dict[str, Any]:
        """Get default quality assessment configuration."""
        return {
            "quality_threshold": 0.7,
            "relevance_weight": 0.3,
            "completeness_weight": 0.25,
            "coherence_weight": 0.2,
            "source_fidelity_weight": 0.25,
            "min_response_length": 50,
            "target_response_length": 300,
            "max_response_length": 1000,
            "min_citation_count": 1,
            "preferred_source_count": 3,
            "enable_detailed_analysis": True,
        }

    def calculate_quality_score(
        self,
        response: str,
        query: str,
        sources: List[Dict[str, Any]],
        context: Optional[str] = None,
    ) -> QualityScore:
        """
        Calculate comprehensive quality score for response.

        Args:
            response: Generated response text
            query: Original user query
            sources: Source documents used
            context: Optional additional context

        Returns:
            QualityScore with detailed metrics and recommendations
        """
        try:
            # Calculate individual dimension scores
            relevance = self._calculate_relevance_score(response, query)
            completeness = self._calculate_completeness_score(response, query)
            coherence = self._calculate_coherence_score(response)
            source_fidelity = self._calculate_source_fidelity_score(response, sources)
            professionalism = self._calculate_professionalism_score(response)

            # Calculate weighted overall score
            overall = self._calculate_overall_score(
                relevance, completeness, coherence, source_fidelity, professionalism
            )

            # Analyze response characteristics
            response_analysis = self._analyze_response_characteristics(response, sources)

            # Determine confidence level
            confidence_level = self._determine_confidence_level(overall, response_analysis)

            # Generate insights
            strengths, weaknesses, recommendations = self._generate_quality_insights(
                relevance,
                completeness,
                coherence,
                source_fidelity,
                professionalism,
                response_analysis,
            )

            return QualityScore(
                overall_score=overall,
                relevance_score=relevance,
                completeness_score=completeness,
                coherence_score=coherence,
                source_fidelity_score=source_fidelity,
                professionalism_score=professionalism,
                response_length=response_analysis["length"],
                citation_count=response_analysis["citation_count"],
                source_count=response_analysis["source_count"],
                confidence_level=confidence_level,
                meets_threshold=overall >= self.config["quality_threshold"],
                strengths=strengths,
                weaknesses=weaknesses,
                recommendations=recommendations,
            )

        except Exception as e:
            logger.error(f"Quality scoring error: {e}")
            return QualityScore(
                overall_score=0.0,
                relevance_score=0.0,
                completeness_score=0.0,
                coherence_score=0.0,
                source_fidelity_score=0.0,
                professionalism_score=0.0,
                response_length=len(response),
                citation_count=0,
                source_count=len(sources),
                confidence_level="low",
                meets_threshold=False,
                strengths=[],
                weaknesses=["Error in quality assessment"],
                recommendations=["Retry quality assessment"],
            )

    def _calculate_relevance_score(self, response: str, query: str) -> float:
        """Calculate how well response addresses the query."""
        if not query.strip():
            return 1.0  # No query to compare against

        # Extract key terms from query
        query_terms = self._extract_key_terms(query)
        response_terms = self._extract_key_terms(response)

        if not query_terms:
            return 1.0

        # Calculate term overlap
        overlap = len(query_terms.intersection(response_terms))
        term_coverage = overlap / len(query_terms)

        # Check for semantic relevance patterns
        semantic_relevance = self._check_semantic_relevance(response, query)

        # Combine scores
        relevance = (term_coverage * 0.6) + (semantic_relevance * 0.4)
        return min(relevance, 1.0)

    def _calculate_completeness_score(self, response: str, query: str) -> float:
        """Calculate how completely the response addresses the query."""
        response_length = len(response)
        target_length = self.config["target_response_length"]
        min_length = self.config["min_response_length"]

        # Length-based completeness
        if response_length < min_length:
            length_score = response_length / min_length * 0.5
        elif response_length <= target_length:
            length_score = 0.5 + (response_length - min_length) / (target_length - min_length) * 0.5
        else:
            # Diminishing returns for very long responses
            excess = response_length - target_length
            penalty = min(excess / target_length * 0.2, 0.3)
            length_score = 1.0 - penalty

        # Structure-based completeness
        structure_score = self._assess_response_structure(response)

        # Information density
        density_score = self._assess_information_density(response, query)

        # Combine scores
        completeness = (length_score * 0.4) + (structure_score * 0.3) + (density_score * 0.3)
        return min(max(completeness, 0.0), 1.0)

    def _calculate_coherence_score(self, response: str) -> float:
        """Calculate logical structure and coherence of response."""
        sentences = [s.strip() for s in response.split(".") if s.strip()]

        if len(sentences) < 2:
            return 0.8  # Short responses are typically coherent

        # Check for logical flow indicators
        flow_indicators = [
            "however",
            "therefore",
            "additionally",
            "furthermore",
            "consequently",
            "moreover",
            "nevertheless",
            "in addition",
            "as a result",
            "for example",
        ]

        response_lower = response.lower()
        flow_score = sum(1 for indicator in flow_indicators if indicator in response_lower)
        flow_score = min(flow_score / 3, 1.0)  # Normalize

        # Check for repetition (negative indicator)
        unique_sentences = len(set(s.lower() for s in sentences))
        repetition_score = unique_sentences / len(sentences)

        # Check for topic consistency
        consistency_score = self._assess_topic_consistency(sentences)

        # Check for clear conclusion/summary
        conclusion_score = self._has_clear_conclusion(response)

        # Combine scores
        coherence = flow_score * 0.3 + repetition_score * 0.3 + consistency_score * 0.2 + conclusion_score * 0.2

        return min(coherence, 1.0)

    def _calculate_source_fidelity_score(self, response: str, sources: List[Dict[str, Any]]) -> float:
        """Calculate alignment between response and source documents."""
        if not sources:
            return 0.5  # Neutral score if no sources

        # Citation presence and quality
        citation_score = self._assess_citation_quality(response, sources)

        # Content alignment with sources
        alignment_score = self._assess_content_alignment(response, sources)

        # Source coverage (how many sources are referenced)
        coverage_score = self._assess_source_coverage(response, sources)

        # Factual consistency check
        consistency_score = self._check_factual_consistency(response, sources)

        # Combine scores
        fidelity = citation_score * 0.3 + alignment_score * 0.4 + coverage_score * 0.15 + consistency_score * 0.15

        return min(fidelity, 1.0)

    def _calculate_professionalism_score(self, response: str) -> float:
        """Calculate professional tone and appropriateness."""
        # Check for professional language patterns
        professional_indicators = [
            r"\b(?:please|thank you|according to|based on|our policy|guidelines)\b",
            r"\b(?:recommend|suggest|advise|ensure|confirm)\b",
            r"\b(?:appropriate|professional|compliance|requirements)\b",
        ]

        professional_count = sum(
            len(re.findall(pattern, response, re.IGNORECASE)) for pattern in professional_indicators
        )

        professional_score = min(professional_count / 3, 1.0)

        # Check for unprofessional patterns
        unprofessional_patterns = [
            r"\b(?:yo|hey|wassup|gonna|wanna)\b",
            r"\b(?:lol|omg|wtf|tbh|idk)\b",
            r"[!]{2,}|[?]{2,}",
            r"\b(?:stupid|dumb|crazy|insane)\b",
        ]

        unprofessional_count = sum(
            len(re.findall(pattern, response, re.IGNORECASE)) for pattern in unprofessional_patterns
        )

        unprofessional_penalty = min(unprofessional_count * 0.3, 0.8)

        # Check tone appropriateness
        tone_score = self._assess_tone_appropriateness(response)

        # Combine scores
        professionalism = professional_score + tone_score - unprofessional_penalty
        return min(max(professionalism, 0.0), 1.0)

    def _calculate_overall_score(
        self,
        relevance: float,
        completeness: float,
        coherence: float,
        source_fidelity: float,
        professionalism: float,
    ) -> float:
        """Calculate weighted overall quality score."""
        weights = self.config

        overall = (
            relevance * weights["relevance_weight"]
            + completeness * weights["completeness_weight"]
            + coherence * weights["coherence_weight"]
            + source_fidelity * weights["source_fidelity_weight"]
            + professionalism * 0.0  # Not weighted in overall for now
        )

        return min(max(overall, 0.0), 1.0)

    def _extract_key_terms(self, text: str) -> Set[str]:
        """Extract key terms from text for relevance analysis."""
        # Simple keyword extraction (can be enhanced with NLP)
        words = re.findall(r"\b\w+\b", text.lower())

        # Filter out common stop words
        stop_words = {
            "the",
            "a",
            "an",
            "and",
            "or",
            "but",
            "in",
            "on",
            "at",
            "to",
            "for",
            "of",
            "with",
            "by",
            "from",
            "up",
            "about",
            "into",
            "through",
            "during",
            "before",
            "after",
            "above",
            "below",
            "between",
            "among",
            "is",
            "are",
            "was",
            "were",
            "be",
            "been",
            "being",
            "have",
            "has",
            "had",
            "do",
            "does",
            "did",
            "will",
            "would",
            "could",
            "should",
            "may",
            "might",
            "can",
            "what",
            "where",
            "when",
            "why",
            "how",
            "this",
            "that",
            "these",
            "those",
        }

        return {word for word in words if len(word) > 2 and word not in stop_words}

    def _check_semantic_relevance(self, response: str, query: str) -> float:
        """Check semantic relevance between response and query."""
        # Look for question-answer patterns
        query_lower = query.lower()
        response_lower = response.lower()

        relevance_patterns = [
            (r"\bwhat\b", r"\b(?:is|are|include|involves)\b"),
            (r"\bhow\b", r"\b(?:by|through|via|process|step)\b"),
            (r"\bwhen\b", r"\b(?:during|after|before|time|date)\b"),
            (r"\bwhere\b", r"\b(?:at|in|location|place)\b"),
            (r"\bwhy\b", r"\b(?:because|due to|reason|purpose)\b"),
            (r"\bpolicy\b", r"\b(?:policy|guideline|rule|procedure)\b"),
        ]

        relevance_score = 0.0
        for query_pattern, response_pattern in relevance_patterns:
            if re.search(query_pattern, query_lower) and re.search(response_pattern, response_lower):
                relevance_score += 0.2

        return min(relevance_score, 1.0)

    def _assess_response_structure(self, response: str) -> float:
        """Assess structural completeness of response."""
        structure_score = 0.0

        # Check for introduction/context
        intro_patterns = [r"according to", r"based on", r"our policy", r"the guideline"]
        if any(re.search(pattern, response, re.IGNORECASE) for pattern in intro_patterns):
            structure_score += 0.3

        # Check for main content/explanation
        if len(response.split(".")) >= 2:
            structure_score += 0.4

        # Check for conclusion/summary
        conclusion_patterns = [
            r"in summary",
            r"therefore",
            r"as a result",
            r"please contact",
        ]
        if any(re.search(pattern, response, re.IGNORECASE) for pattern in conclusion_patterns):
            structure_score += 0.3

        return min(structure_score, 1.0)

    def _assess_information_density(self, response: str, query: str) -> float:
        """Assess information density relative to query complexity."""
        # Simple heuristic based on content richness
        words = len(response.split())
        sentences = len([s for s in response.split(".") if s.strip()])

        if sentences == 0:
            return 0.0

        avg_sentence_length = words / sentences

        # Optimal range: 15-25 words per sentence for policy content
        if 15 <= avg_sentence_length <= 25:
            density_score = 1.0
        elif avg_sentence_length < 15:
            density_score = avg_sentence_length / 15
        else:
            density_score = max(0.5, 1.0 - (avg_sentence_length - 25) / 25)

        return min(density_score, 1.0)

    def _assess_topic_consistency(self, sentences: List[str]) -> float:
        """Assess topic consistency across sentences."""
        if len(sentences) < 2:
            return 1.0

        # Extract key terms from each sentence
        sentence_terms = [self._extract_key_terms(sentence) for sentence in sentences]

        # Calculate overlap between consecutive sentences
        consistency_scores = []
        for i in range(len(sentence_terms) - 1):
            current_terms = sentence_terms[i]
            next_terms = sentence_terms[i + 1]

            if current_terms and next_terms:
                overlap = len(current_terms.intersection(next_terms))
                total = len(current_terms.union(next_terms))
                consistency = overlap / total if total > 0 else 0
                consistency_scores.append(consistency)

        return sum(consistency_scores) / len(consistency_scores) if consistency_scores else 0.5

    def _has_clear_conclusion(self, response: str) -> float:
        """Check if response has a clear conclusion."""
        conclusion_indicators = [
            r"in summary",
            r"in conclusion",
            r"therefore",
            r"as a result",
            r"please contact",
            r"for more information",
            r"if you have questions",
        ]

        response_lower = response.lower()
        has_conclusion = any(re.search(pattern, response_lower) for pattern in conclusion_indicators)

        return 1.0 if has_conclusion else 0.5

    def _assess_citation_quality(self, response: str, sources: List[Dict[str, Any]]) -> float:
        """Assess quality and presence of citations."""
        if not sources:
            return 0.5

        citation_patterns = [
            r"\[.*?\]",  # [source]
            r"\(.*?\)",  # (source)
            r"according to.*?",  # according to X
            r"based on.*?",  # based on X
            r"as stated in.*?",  # as stated in X
        ]

        citations_found = sum(len(re.findall(pattern, response, re.IGNORECASE)) for pattern in citation_patterns)

        # Score based on citation density
        min_citations = self.config["min_citation_count"]
        citation_score = min(citations_found / min_citations, 1.0)

        return citation_score

    def _assess_content_alignment(self, response: str, sources: List[Dict[str, Any]]) -> float:
        """Assess how well response content aligns with sources."""
        if not sources:
            return 0.5

        # Extract content from sources
        source_content = " ".join(source.get("content", "") for source in sources).lower()

        response_terms = self._extract_key_terms(response)
        source_terms = self._extract_key_terms(source_content)

        if not source_terms:
            return 0.5

        # Calculate alignment
        alignment = len(response_terms.intersection(source_terms)) / len(response_terms)
        return min(alignment, 1.0)

    def _assess_source_coverage(self, response: str, sources: List[Dict[str, Any]]) -> float:
        """Assess how many sources are referenced in response."""
        response_lower = response.lower()

        referenced_sources = 0
        for source in sources:
            doc_name = source.get("metadata", {}).get("filename", "").lower()
            if doc_name and doc_name in response_lower:
                referenced_sources += 1

        preferred_count = min(self.config["preferred_source_count"], len(sources))
        if preferred_count == 0:
            return 1.0

        coverage = referenced_sources / preferred_count
        return min(coverage, 1.0)

    def _check_factual_consistency(self, response: str, sources: List[Dict[str, Any]]) -> float:
        """Check factual consistency between response and sources."""
        # Simple consistency check (can be enhanced with fact-checking models)
        # For now, assume consistency if no obvious contradictions

        # Look for absolute statements that might contradict sources
        absolute_patterns = [
            r"\b(?:never|always|all|none|every|no)\b",
            r"\b(?:definitely|certainly|absolutely)\b",
        ]

        absolute_count = sum(len(re.findall(pattern, response, re.IGNORECASE)) for pattern in absolute_patterns)

        # Penalize excessive absolute statements
        consistency_penalty = min(absolute_count * 0.1, 0.3)
        consistency_score = 1.0 - consistency_penalty

        return max(consistency_score, 0.0)

    def _assess_tone_appropriateness(self, response: str) -> float:
        """Assess appropriateness of tone for corporate communication."""
        # Check for appropriate corporate tone indicators
        corporate_tone_indicators = [
            r"\b(?:recommend|advise|suggest|ensure|comply)\b",
            r"\b(?:policy|procedure|guideline|requirement)\b",
            r"\b(?:appropriate|professional|please|thank you)\b",
        ]

        tone_score = 0.0
        for pattern in corporate_tone_indicators:
            matches = len(re.findall(pattern, response, re.IGNORECASE))
            tone_score += min(matches * 0.1, 0.3)

        return min(tone_score, 1.0)

    def _analyze_response_characteristics(self, response: str, sources: List[Dict[str, Any]]) -> Dict[str, Any]:
        """Analyze basic characteristics of the response."""
        # Count citations
        citation_patterns = [r"\[.*?\]", r"\(.*?\)", r"according to", r"based on"]
        citation_count = sum(len(re.findall(pattern, response, re.IGNORECASE)) for pattern in citation_patterns)

        return {
            "length": len(response),
            "word_count": len(response.split()),
            "sentence_count": len([s for s in response.split(".") if s.strip()]),
            "citation_count": citation_count,
            "source_count": len(sources),
        }

    def _determine_confidence_level(self, overall_score: float, characteristics: Dict[str, Any]) -> str:
        """Determine confidence level based on score and characteristics."""
        if overall_score >= 0.8 and characteristics["citation_count"] >= 1:
            return "high"
        elif overall_score >= 0.6:
            return "medium"
        else:
            return "low"

    def _generate_quality_insights(
        self,
        relevance: float,
        completeness: float,
        coherence: float,
        source_fidelity: float,
        professionalism: float,
        characteristics: Dict[str, Any],
    ) -> Tuple[List[str], List[str], List[str]]:
        """Generate strengths, weaknesses, and recommendations."""
        strengths = []
        weaknesses = []
        recommendations = []

        # Analyze strengths
        if relevance >= 0.8:
            strengths.append("Highly relevant to user query")
        if completeness >= 0.8:
            strengths.append("Comprehensive and complete response")
        if coherence >= 0.8:
            strengths.append("Well-structured and coherent")
        if source_fidelity >= 0.8:
            strengths.append("Strong alignment with source documents")
        if professionalism >= 0.8:
            strengths.append("Professional and appropriate tone")

        # Analyze weaknesses
        if relevance < 0.6:
            weaknesses.append("Limited relevance to user query")
            recommendations.append("Ensure response directly addresses the question")
        if completeness < 0.6:
            weaknesses.append("Incomplete or insufficient information")
            recommendations.append("Provide more comprehensive information")
        if coherence < 0.6:
            weaknesses.append("Poor logical structure or flow")
            recommendations.append("Improve logical organization and flow")
        if source_fidelity < 0.6:
            weaknesses.append("Weak alignment with source documents")
            recommendations.append("Include proper citations and source references")
        if professionalism < 0.6:
            weaknesses.append("Unprofessional tone or language")
            recommendations.append("Use more professional and appropriate language")

        # Length-based recommendations
        if characteristics["length"] < self.config["min_response_length"]:
            recommendations.append("Provide more detailed information")
        elif characteristics["length"] > self.config["max_response_length"]:
            recommendations.append("Consider condensing the response")

        return strengths, weaknesses, recommendations