Spaces:
Sleeping
Sleeping
File size: 21,680 Bytes
135f0d6 159faf0 135f0d6 159faf0 135f0d6 159faf0 135f0d6 159faf0 135f0d6 159faf0 135f0d6 159faf0 135f0d6 159faf0 135f0d6 159faf0 135f0d6 159faf0 135f0d6 159faf0 135f0d6 159faf0 135f0d6 159faf0 135f0d6 159faf0 135f0d6 159faf0 135f0d6 a52e676 135f0d6 159faf0 135f0d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
"""
Guardrails System - Main orchestrator for comprehensive response validation
This module provides the main GuardrailsSystem class that coordinates
all guardrails components for comprehensive response validation.
"""
import logging
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
from .content_filters import ContentFilter, SafetyResult
from .error_handlers import ErrorHandler, GuardrailsError
from .quality_metrics import QualityMetrics, QualityScore
from .response_validator import ResponseValidator, ValidationResult
from .source_attribution import Citation, SourceAttributor
logger = logging.getLogger(__name__)
@dataclass
class GuardrailsResult:
"""Comprehensive result from guardrails validation."""
is_approved: bool
confidence_score: float
# Component results
validation_result: ValidationResult
safety_result: SafetyResult
quality_score: QualityScore
citations: List[Citation]
# Processing metadata
processing_time: float
components_used: List[str]
fallbacks_applied: List[str]
warnings: List[str]
recommendations: List[str]
# Final response data
filtered_response: str
enhanced_response: str # Response with citations
metadata: Dict[str, Any]
class GuardrailsSystem:
"""
Main guardrails system orchestrating all validation components.
Provides comprehensive response validation including:
- Response quality and safety validation
- Content filtering and PII protection
- Source attribution and citation generation
- Quality scoring and recommendations
- Error handling and graceful fallbacks
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""
Initialize GuardrailsSystem with configuration.
Args:
config: Configuration dictionary for all guardrails components
"""
self.config = config or self._get_default_config()
# Initialize components
self.response_validator = ResponseValidator(self.config.get("response_validator", {}))
self.content_filter = ContentFilter(self.config.get("content_filter", {}))
self.quality_metrics = QualityMetrics(self.config.get("quality_metrics", {}))
self.source_attributor = SourceAttributor(self.config.get("source_attribution", {}))
self.error_handler = ErrorHandler(self.config.get("error_handler", {}))
logger.info("GuardrailsSystem initialized with all components")
def _get_default_config(self) -> Dict[str, Any]:
"""Get default configuration for guardrails system."""
return {
"enable_all_checks": True,
"strict_mode": False,
"require_approval": True,
"min_confidence_threshold": 0.7,
"enable_response_enhancement": True,
"log_all_results": True,
"response_validator": {
"min_overall_quality": 0.7,
"require_citations": True,
"min_response_length": 10,
"max_response_length": 2000,
"enable_safety_checks": True,
"enable_coherence_check": True,
"enable_completeness_check": True,
"enable_relevance_check": True,
},
"content_filter": {
"enable_pii_filtering": True,
"enable_bias_detection": True,
"enable_inappropriate_filter": True,
"enable_topic_validation": True,
"strict_mode": False,
"mask_pii": True,
"allowed_topics": [
"corporate policy",
"employee handbook",
"workplace guidelines",
"company procedures",
"benefits",
"hr policies",
],
"pii_mask_char": "*",
"max_bias_score": 0.3,
"min_professionalism_score": 0.7,
"safety_threshold": 0.8,
},
"quality_metrics": {
"quality_threshold": 0.7,
"relevance_weight": 0.3,
"completeness_weight": 0.25,
"coherence_weight": 0.2,
"source_fidelity_weight": 0.25,
"min_response_length": 50,
"target_response_length": 300,
"max_response_length": 1000,
"min_citation_count": 1,
"preferred_source_count": 3,
"enable_detailed_analysis": True,
"enable_relevance_scoring": True,
"enable_completeness_scoring": True,
"enable_coherence_scoring": True,
"enable_source_fidelity_scoring": True,
"enable_professionalism_scoring": True,
},
"source_attribution": {
"max_citations": 5,
"citation_format": "numbered",
"max_excerpt_length": 200,
"require_document_names": True,
"min_source_confidence": 0.5,
"min_confidence_for_citation": 0.3,
"enable_quote_extraction": True,
},
"error_handler": {
"enable_fallbacks": True,
"graceful_degradation": True,
"max_retries": 3,
"enable_circuit_breaker": True,
"failure_threshold": 5,
"recovery_timeout": 60,
},
}
def validate_response(
self,
response: str,
query: str,
sources: List[Dict[str, Any]],
context: Optional[str] = None,
) -> GuardrailsResult:
"""
Perform comprehensive validation of RAG response.
Args:
response: Generated response text
query: Original user query
sources: Source documents used for generation
context: Optional additional context
Returns:
GuardrailsResult with comprehensive validation results
"""
import time
start_time = time.time()
components_used = []
fallbacks_applied = []
warnings = []
try:
# 1. Content Safety Filtering
try:
safety_result = self.content_filter.filter_content(response, context)
components_used.append("content_filter")
if not safety_result.is_safe and self.config["strict_mode"]:
return self._create_rejection_result(
"Content safety validation failed",
safety_result,
components_used,
time.time() - start_time,
)
except Exception as e:
logger.warning(f"Content filtering failed: {e}")
safety_recovery = self.error_handler.handle_content_filter_error(e, response, context)
# Create SafetyResult from recovery data
safety_result = SafetyResult(
is_safe=safety_recovery.get("is_safe", True),
risk_level=safety_recovery.get("risk_level", "medium"),
issues_found=safety_recovery.get("issues_found", ["Recovery applied"]),
filtered_content=safety_recovery.get("filtered_content", response),
confidence=safety_recovery.get("confidence", 0.5),
)
fallbacks_applied.append("content_filter_fallback")
warnings.append("Content filtering used fallback")
# Use filtered content for subsequent checks
filtered_response = safety_result.filtered_content
# 2. Response Validation
try:
validation_result = self.response_validator.validate_response(filtered_response, sources, query)
components_used.append("response_validator")
except Exception as e:
logger.warning(f"Response validation failed: {e}")
validation_recovery = self.error_handler.handle_validation_error(
e, filtered_response, {"query": query, "sources": sources}
)
if validation_recovery["success"]:
validation_result = validation_recovery["result"]
fallbacks_applied.append("validation_fallback")
else:
# Critical failure
raise GuardrailsError(
"Response validation failed critically",
"validation_failure",
{"original_error": str(e)},
)
# 3. Quality Assessment
try:
quality_score = self.quality_metrics.calculate_quality_score(filtered_response, query, sources, context)
components_used.append("quality_metrics")
except Exception as e:
logger.warning(f"Quality assessment failed: {e}")
quality_recovery = self.error_handler.handle_quality_metrics_error(e, filtered_response, query, sources)
if quality_recovery["success"]:
quality_score = quality_recovery["quality_score"]
fallbacks_applied.append("quality_metrics_fallback")
else:
# Use minimal fallback score
quality_score = QualityScore(
overall_score=0.5,
relevance_score=0.5,
completeness_score=0.5,
coherence_score=0.5,
source_fidelity_score=0.5,
professionalism_score=0.5,
response_length=len(filtered_response),
citation_count=0,
source_count=len(sources),
confidence_level="low",
meets_threshold=False,
strengths=[],
weaknesses=["Quality assessment failed"],
recommendations=["Manual review required"],
)
fallbacks_applied.append("quality_score_minimal_fallback")
# 4. Source Attribution
try:
citations = self.source_attributor.generate_citations(filtered_response, sources)
components_used.append("source_attribution")
except Exception as e:
logger.warning(f"Source attribution failed: {e}")
citation_recovery = self.error_handler.handle_source_attribution_error(e, filtered_response, sources)
citations = citation_recovery.get("citations", [])
fallbacks_applied.append("citation_fallback")
# 5. Calculate Overall Approval
approval_decision = self._calculate_approval(validation_result, safety_result, quality_score, citations)
# 6. Enhance Response (if approved and enabled)
enhanced_response = filtered_response
if approval_decision["approved"] and self.config["enable_response_enhancement"]:
enhanced_response = self._enhance_response_with_citations(filtered_response, citations)
# 7. Generate Recommendations
recommendations = self._generate_recommendations(validation_result, safety_result, quality_score, citations)
processing_time = time.time() - start_time
# Create final result
result = GuardrailsResult(
is_approved=approval_decision["approved"],
confidence_score=approval_decision["confidence"],
validation_result=validation_result,
safety_result=safety_result,
quality_score=quality_score,
citations=citations,
processing_time=processing_time,
components_used=components_used,
fallbacks_applied=fallbacks_applied,
warnings=warnings,
recommendations=recommendations,
filtered_response=filtered_response,
enhanced_response=enhanced_response,
metadata={
"query": query,
"source_count": len(sources),
"approval_reason": approval_decision["reason"],
},
)
if self.config["log_all_results"]:
self._log_result(result)
return result
except Exception as e:
logger.error(f"Guardrails system error: {e}")
processing_time = time.time() - start_time
return self._create_error_result(str(e), response, components_used, processing_time)
def _calculate_approval(
self,
validation_result: ValidationResult,
safety_result: SafetyResult,
quality_score: QualityScore,
citations: List[Citation],
) -> Dict[str, Any]:
"""Calculate overall approval decision."""
# Safety is mandatory
if not safety_result.is_safe:
return {
"approved": False,
"confidence": 0.0,
"reason": f"Safety violation: {safety_result.risk_level} risk",
}
# Validation check
if not validation_result.is_valid and self.config["strict_mode"]:
return {
"approved": False,
"confidence": validation_result.confidence_score,
"reason": "Validation failed in strict mode",
}
# Quality threshold
min_threshold = self.config["min_confidence_threshold"]
if quality_score.overall_score < min_threshold:
return {
"approved": False,
"confidence": quality_score.overall_score,
"reason": f"Quality below threshold ({min_threshold})",
}
# Citation requirement
if self.config["response_validator"]["require_citations"] and not citations:
return {
"approved": False,
"confidence": 0.5,
"reason": "No citations provided",
}
# Calculate combined confidence
confidence_factors = [
validation_result.confidence_score,
safety_result.confidence,
quality_score.overall_score,
]
combined_confidence = sum(confidence_factors) / len(confidence_factors)
return {
"approved": True,
"confidence": combined_confidence,
"reason": "All validation checks passed",
}
def _enhance_response_with_citations(self, response: str, citations: List[Citation]) -> str:
"""Enhance response by adding formatted citations."""
if not citations:
return response
try:
citation_text = self.source_attributor.format_citation_text(citations)
return response + citation_text
except Exception as e:
logger.warning(f"Citation formatting failed: {e}")
return response
def _generate_recommendations(
self,
validation_result: ValidationResult,
safety_result: SafetyResult,
quality_score: QualityScore,
citations: List[Citation],
) -> List[str]:
"""Generate actionable recommendations."""
recommendations = []
# From validation
recommendations.extend(validation_result.suggestions)
# From quality assessment
recommendations.extend(quality_score.recommendations)
# Safety recommendations
if safety_result.risk_level != "low":
recommendations.append("Review content for safety concerns")
# Citation recommendations
if not citations:
recommendations.append("Add proper source citations")
elif len(citations) < 2:
recommendations.append("Consider adding more source citations")
return list(set(recommendations)) # Remove duplicates
def _create_rejection_result(
self,
reason: str,
safety_result: SafetyResult,
components_used: List[str],
processing_time: float,
) -> GuardrailsResult:
"""Create result for rejected response."""
# Create minimal components for rejection
validation_result = ValidationResult(
is_valid=False,
confidence_score=0.0,
safety_passed=False,
quality_score=0.0,
issues=[reason],
suggestions=["Address safety concerns before resubmitting"],
)
quality_score = QualityScore(
overall_score=0.0,
relevance_score=0.0,
completeness_score=0.0,
coherence_score=0.0,
source_fidelity_score=0.0,
professionalism_score=0.0,
response_length=0,
citation_count=0,
source_count=0,
confidence_level="low",
meets_threshold=False,
strengths=[],
weaknesses=[reason],
recommendations=["Address safety violations"],
)
return GuardrailsResult(
is_approved=False,
confidence_score=0.0,
validation_result=validation_result,
safety_result=safety_result,
quality_score=quality_score,
citations=[],
processing_time=processing_time,
components_used=components_used,
fallbacks_applied=[],
warnings=[reason],
recommendations=["Address safety concerns"],
filtered_response="",
enhanced_response="",
metadata={"rejection_reason": reason},
)
def _create_error_result(
self,
error_message: str,
original_response: str,
components_used: List[str],
processing_time: float,
) -> GuardrailsResult:
"""Create result for system error."""
# Create error components
validation_result = ValidationResult(
is_valid=False,
confidence_score=0.0,
safety_passed=False,
quality_score=0.0,
issues=[f"System error: {error_message}"],
suggestions=["Retry request or contact support"],
)
safety_result = SafetyResult(
is_safe=False,
risk_level="high",
issues_found=[f"System error: {error_message}"],
filtered_content=original_response,
confidence=0.0,
)
quality_score = QualityScore(
overall_score=0.0,
relevance_score=0.0,
completeness_score=0.0,
coherence_score=0.0,
source_fidelity_score=0.0,
professionalism_score=0.0,
response_length=len(original_response),
citation_count=0,
source_count=0,
confidence_level="low",
meets_threshold=False,
strengths=[],
weaknesses=["System error occurred"],
recommendations=["Retry or contact support"],
)
return GuardrailsResult(
is_approved=False,
confidence_score=0.0,
validation_result=validation_result,
safety_result=safety_result,
quality_score=quality_score,
citations=[],
processing_time=processing_time,
components_used=components_used,
fallbacks_applied=[],
warnings=[f"System error: {error_message}"],
recommendations=["Retry request"],
filtered_response=original_response,
enhanced_response=original_response,
metadata={"error": error_message},
)
def _log_result(self, result: GuardrailsResult) -> None:
"""Log guardrails result for monitoring."""
logger.info(
f"Guardrails validation: approved={result.is_approved}, "
f"confidence={result.confidence_score:.3f}, "
f"components={len(result.components_used)}, "
f"processing_time={result.processing_time:.3f}s"
)
if not result.is_approved:
rejection_reason = result.metadata.get("rejection_reason", "unknown")
logger.warning(f"Response rejected: {rejection_reason}")
if result.fallbacks_applied:
logger.warning(f"Fallbacks applied: {result.fallbacks_applied}")
def get_system_health(self) -> Dict[str, Any]:
"""Get health status of guardrails system."""
error_stats = self.error_handler.get_error_statistics()
# Check if any circuit breakers are open
circuit_breakers_open = any(error_stats.get("circuit_breakers", {}).values())
return {
"status": "healthy" if not circuit_breakers_open else "degraded",
"components": {
"response_validator": "healthy",
"content_filter": "healthy",
"quality_metrics": "healthy",
"source_attribution": "healthy",
"error_handler": "healthy",
},
"error_statistics": error_stats,
"configuration": {
"strict_mode": self.config["strict_mode"],
"min_confidence_threshold": self.config["min_confidence_threshold"],
"enable_response_enhancement": self.config["enable_response_enhancement"],
},
}
|