Spaces:
Sleeping
Sleeping
File size: 14,588 Bytes
01d5d1b 135f0d6 7169a55 933e63c 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b 135f0d6 01d5d1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
# fmt: off
"""
Error Handlers - Comprehensive error handling and fallbacks
This module provides robust error handling, graceful degradation,
and fallback mechanisms for the guardrails system.
Updated: October 18, 2025 - CI/CD format fix attempt
"""
import logging
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
logger = logging.getLogger(__name__)
class GuardrailsError(Exception):
"""Base exception for guardrails-related errors."""
def __init__(
self,
message: str,
error_type: str = "unknown",
details: Optional[Dict[str, Any]] = None,
):
super().__init__(message)
self.message = message
self.error_type = error_type
self.details = details or {}
@dataclass
class ErrorContext:
"""Context information for error handling."""
component: str
operation: str
input_data: Dict[str, Any]
error_message: str
error_type: str
timestamp: str
recovery_attempted: bool = False
recovery_successful: bool = False
class ErrorHandler:
"""
Comprehensive error handling system for guardrails.
Provides:
- Graceful error recovery
- Fallback mechanisms
- Circuit breaker patterns
- Detailed error logging and metrics
"""
def __init__(self, circuit_breaker_threshold: int = 5):
self.error_history: List[ErrorContext] = []
self.circuit_breakers: Dict[str, Dict[str, Any]] = {}
self.circuit_breaker_threshold = circuit_breaker_threshold
def handle_error(
self,
error: Exception,
component: str,
operation: str,
input_data: Dict[str, Any],
recovery_strategy: Optional[str] = None,
) -> Dict[str, Any]:
"""
Handle an error with appropriate strategy.
Args:
error: The exception that occurred
component: Component where error occurred
operation: Operation being performed
input_data: Input data when error occurred
recovery_strategy: Strategy to use for recovery
Returns:
Dictionary with error handling results
"""
from datetime import datetime
error_context = ErrorContext(
component=component,
operation=operation,
input_data=input_data,
error_message=str(error),
error_type=type(error).__name__,
timestamp=datetime.now().isoformat(),
)
# Log the error
logger.error(
f"Error in {component}.{operation}: {error_context.error_message}",
extra={
"component": component,
"operation": operation,
"error_type": error_context.error_type,
"details": error_context.input_data,
},
)
# Update circuit breaker
self._update_circuit_breaker(component)
# Try recovery if not in circuit breaker state
recovery_result = None
if not self._is_circuit_breaker_open(component):
recovery_result = self._attempt_recovery(
error_context, recovery_strategy
)
# Store error in history
self.error_history.append(error_context)
# Maintain history size (keep last 1000 errors)
if len(self.error_history) > 1000:
self.error_history = self.error_history[-1000:]
return {
"error_handled": True,
"error_context": error_context,
"recovery_attempted": recovery_result is not None,
"recovery_successful": recovery_result.get("success", False) if recovery_result else False,
"circuit_breaker_open": self._is_circuit_breaker_open(component),
"fallback_available": self._has_fallback(component, operation),
}
def _attempt_recovery(
self, error_context: ErrorContext, strategy: Optional[str] = None
) -> Optional[Dict[str, Any]]:
"""Attempt to recover from error using specified strategy."""
error_context.recovery_attempted = True
if strategy == "retry":
return self._retry_operation(error_context)
elif strategy == "fallback":
return self._use_fallback(error_context)
elif strategy == "degrade":
return self._graceful_degradation(error_context)
else:
# Auto-select strategy based on error type
return self._auto_recovery(error_context)
def _retry_operation(self, error_context: ErrorContext) -> Dict[str, Any]:
"""Attempt to retry the failed operation."""
try:
# This would implement actual retry logic
# For now, we simulate a recovery attempt
logger.info(
f"Retrying operation {error_context.operation} in {error_context.component}"
)
# Simulate retry success/failure
import random
success = random.random() > 0.3 # 70% success rate for simulation
if success:
error_context.recovery_successful = True
logger.info(f"Retry successful for {error_context.component}.{error_context.operation}")
else:
logger.warning(f"Retry failed for {error_context.component}.{error_context.operation}")
return {"success": success, "strategy": "retry", "attempts": 1}
except Exception as e:
logger.error(f"Retry operation failed: {e}")
return {"success": False, "strategy": "retry", "error": str(e)}
def _use_fallback(self, error_context: ErrorContext) -> Dict[str, Any]:
"""Use fallback mechanism for the failed operation."""
try:
fallback_response = self._generate_fallback_response(error_context)
error_context.recovery_successful = True
logger.info(
f"Fallback used for {error_context.component}.{error_context.operation}"
)
return {
"success": True,
"strategy": "fallback",
"response": fallback_response,
}
except Exception as e:
logger.error(f"Fallback failed: {e}")
return {"success": False, "strategy": "fallback", "error": str(e)}
def _graceful_degradation(self, error_context: ErrorContext) -> Dict[str, Any]:
"""Implement graceful degradation."""
try:
degraded_response = self._generate_degraded_response(error_context)
error_context.recovery_successful = True
logger.info(
f"Graceful degradation for {error_context.component}.{error_context.operation}"
)
return {
"success": True,
"strategy": "degrade",
"response": degraded_response,
}
except Exception as e:
logger.error(f"Graceful degradation failed: {e}")
return {"success": False, "strategy": "degrade", "error": str(e)}
def _auto_recovery(self, error_context: ErrorContext) -> Dict[str, Any]:
"""Auto-select recovery strategy based on error context."""
# Select strategy based on error type and component
if error_context.error_type in ["ConnectionError", "TimeoutError"]:
return self._retry_operation(error_context)
elif error_context.component in ["llm", "vector_store"]:
return self._use_fallback(error_context)
else:
return self._graceful_degradation(error_context)
def _generate_fallback_response(self, error_context: ErrorContext) -> Dict[str, Any]:
"""Generate a fallback response for the failed operation."""
if error_context.component == "llm":
return {
"response": "I apologize, but I'm experiencing technical difficulties. Please try your question again or rephrase it.",
"confidence": 0.1,
"source": "fallback_handler",
"citations": [],
}
elif error_context.component == "vector_store":
return {
"documents": [],
"scores": [],
"message": "Search temporarily unavailable. Please try again.",
}
else:
return {
"result": None,
"status": "error",
"message": f"Service temporarily unavailable in {error_context.component}",
}
def _generate_degraded_response(self, error_context: ErrorContext) -> Dict[str, Any]:
"""Generate a degraded response with limited functionality."""
return {
"result": "limited_functionality",
"message": f"Operating in degraded mode for {error_context.component}",
"available_operations": ["basic_query", "status_check"],
"degradation_reason": error_context.error_message,
}
def _update_circuit_breaker(self, component: str) -> None:
"""Update circuit breaker state for component."""
from datetime import datetime, timedelta
if component not in self.circuit_breakers:
self.circuit_breakers[component] = {
"failure_count": 0,
"last_failure": None,
"is_open": False,
}
breaker = self.circuit_breakers[component]
breaker["failure_count"] += 1
breaker["last_failure"] = datetime.now()
# Open circuit breaker if threshold exceeded
if breaker["failure_count"] >= self.circuit_breaker_threshold:
breaker["is_open"] = True
logger.warning(
f"Circuit breaker opened for {component} "
f"(failures: {breaker['failure_count']})"
)
# Auto-reset after 5 minutes
if breaker["is_open"] and breaker["last_failure"]:
if datetime.now() - breaker["last_failure"] > timedelta(minutes=5):
breaker["is_open"] = False
breaker["failure_count"] = 0
logger.info(f"Circuit breaker auto-reset for {component}")
def _is_circuit_breaker_open(self, component: str) -> bool:
"""Check if circuit breaker is open for component."""
return self.circuit_breakers.get(component, {}).get("is_open", False)
def _has_fallback(self, component: str, operation: str) -> bool:
"""Check if fallback is available for component/operation."""
fallback_components = ["llm", "vector_store", "guardrails"]
return component in fallback_components
def get_error_statistics(self) -> Dict[str, Any]:
"""Get comprehensive error statistics."""
if not self.error_history:
return {"total_errors": 0, "component_errors": {}, "most_common_errors": []}
total_errors = len(self.error_history)
component_errors = {}
error_types = {}
for error in self.error_history:
component = error.component
error_type = error.error_type
component_errors[component] = component_errors.get(component, 0) + 1
error_types[error_type] = error_types.get(error_type, 0) + 1
# Get most common errors
most_common = sorted(error_types.items(), key=lambda x: x[1], reverse=True)[:5]
# Component health status
component_health = {}
for component, breaker in self.circuit_breakers.items():
component_health[component] = {
"status": "degraded" if breaker["is_open"] else "healthy",
"failure_count": breaker["failure_count"],
"is_circuit_breaker_open": breaker["is_open"],
}
return {
"total_errors": total_errors,
"component_errors": component_errors,
"most_common_errors": most_common,
"component_health": component_health,
"circuit_breakers": {
k: v["is_open"] for k, v in self.circuit_breakers.items()
},
}
def reset_circuit_breaker(self, component: str) -> bool:
"""Manually reset circuit breaker for component."""
if component in self.circuit_breakers:
self.circuit_breakers[component] = {
"failure_count": 0,
"last_failure": None,
"is_open": False,
}
logger.info(f"Circuit breaker reset for {component}")
return True
return False
def clear_error_history(self) -> None:
"""Clear error history."""
self.error_history.clear()
logger.info("Error history cleared")
class FallbackResponseGenerator:
"""Generates fallback responses when primary systems fail."""
@staticmethod
def generate_llm_fallback(query: str, context: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
"""Generate a fallback LLM response."""
fallback_responses = [
"I apologize, but I'm experiencing technical difficulties. Please try your question again.",
"The service is temporarily unavailable. Please rephrase your question or try again later.",
"I'm having trouble processing your request right now. Could you try a simpler question?",
]
import random
response = random.choice(fallback_responses)
return {
"response": response,
"confidence": 0.1,
"source": "fallback_generator",
"citations": [],
"fallback": True,
}
@staticmethod
def generate_search_fallback(query: str) -> Dict[str, Any]:
"""Generate a fallback search response."""
return {
"documents": [],
"scores": [],
"message": "Search service temporarily unavailable. Please try again later.",
"fallback": True,
}
@staticmethod
def generate_generic_fallback(operation: str, error_message: str) -> Dict[str, Any]:
"""Generate a generic fallback response."""
return {
"result": None,
"status": "service_unavailable",
"message": f"The {operation} service is temporarily unavailable.",
"error_summary": error_message,
"fallback": True,
"suggested_actions": [
"Please try again in a few moments",
"Check your internet connection",
"Contact support if the problem persists",
],
}
# fmt: on
|