Spaces:
Sleeping
Sleeping
File size: 11,233 Bytes
48155ff afecdc5 159faf0 9988b25 7793bb6 afecdc5 159faf0 9988b25 0a7f9b4 7793bb6 afecdc5 9988b25 159faf0 9988b25 afecdc5 48155ff 9988b25 48155ff 7793bb6 159faf0 9988b25 7793bb6 afecdc5 7793bb6 32e4125 afecdc5 32e4125 9988b25 0a7f9b4 32e4125 159faf0 7793bb6 48155ff 9988b25 7793bb6 159faf0 48155ff 9988b25 48155ff 159faf0 7793bb6 9988b25 48155ff 7793bb6 48155ff 7793bb6 48155ff 7793bb6 48155ff 9988b25 159faf0 15f6c83 159faf0 15f6c83 159faf0 9988b25 48155ff 9988b25 7793bb6 9988b25 7793bb6 9988b25 48155ff 9988b25 7793bb6 0a7f9b4 afecdc5 9988b25 afecdc5 7793bb6 afecdc5 9988b25 48155ff 0a7f9b4 48155ff 7793bb6 48155ff afecdc5 7793bb6 0a7f9b4 9988b25 159faf0 9988b25 159faf0 9988b25 7e43525 9988b25 0a7f9b4 7793bb6 48155ff 7793bb6 0a7f9b4 9988b25 0a7f9b4 159faf0 afecdc5 0a7f9b4 48155ff 7793bb6 afecdc5 0a7f9b4 9988b25 0a7f9b4 7793bb6 0a7f9b4 48155ff 9988b25 7793bb6 afecdc5 48155ff afecdc5 159faf0 afecdc5 0a7f9b4 7793bb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
"""Embedding service: lazy-loading sentence-transformers wrapper."""
import logging
import os
from typing import Dict, List, Optional, Tuple
import numpy as np
import onnxruntime as ort
from optimum.onnxruntime import ORTModelForFeatureExtraction
from transformers import AutoTokenizer, PreTrainedTokenizer
from src.utils.memory_utils import log_memory_checkpoint, memory_monitor
def mean_pooling(model_output, attention_mask: np.ndarray) -> np.ndarray:
"""Mean Pooling - Take attention mask into account for correct averaging."""
token_embeddings = model_output.last_hidden_state
input_mask_expanded = (
np.expand_dims(attention_mask, axis=-1).repeat(token_embeddings.shape[-1], axis=-1).astype(float)
)
sum_embeddings = np.sum(token_embeddings * input_mask_expanded, axis=1)
sum_mask = np.clip(np.sum(input_mask_expanded, axis=1), a_min=1e-9, a_max=None)
return sum_embeddings / sum_mask
class EmbeddingService:
"""HuggingFace sentence-transformers wrapper for generating embeddings.
Uses lazy loading and a class-level cache to avoid repeated expensive model
loads and to minimize memory footprint at startup.
This version is optimized to use a quantized ONNX model for lower memory
footprint.
"""
_model_cache: Dict[str, Tuple[ORTModelForFeatureExtraction, PreTrainedTokenizer]] = {}
_quantized_model_name = "optimum/all-MiniLM-L6-v2"
def __init__(
self,
model_name: Optional[str] = None,
device: Optional[str] = None,
batch_size: Optional[int] = None,
):
# Import config values as defaults
from src.config import (
EMBEDDING_BATCH_SIZE,
EMBEDDING_DEVICE,
EMBEDDING_MODEL_NAME,
)
# The original model name is kept for reference. Use quantized model only
# when explicitly enabled via configuration (to avoid breaking tests).
self.original_model_name = model_name or EMBEDDING_MODEL_NAME
from src.config import EMBEDDING_USE_QUANTIZED
if EMBEDDING_USE_QUANTIZED:
self.model_name = self._quantized_model_name
else:
# Keep the model name as originally requested for compatibility
self.model_name = self.original_model_name
self.device = device or EMBEDDING_DEVICE or "cpu"
self.batch_size = batch_size or EMBEDDING_BATCH_SIZE
# Max tokens (sequence length) to bound memory; configurable via env
# EMBEDDING_MAX_TOKENS (default 512)
try:
self.max_tokens = int(os.getenv("EMBEDDING_MAX_TOKENS", "512"))
except ValueError:
self.max_tokens = 512
# Lazy loading - don't load model at initialization
self.model: Optional[ORTModelForFeatureExtraction] = None
self.tokenizer: Optional[PreTrainedTokenizer] = None
logging.info(
"Initialized EmbeddingService: model=%s base=%s device=%s max_tokens=%s",
self.model_name,
self.original_model_name,
self.device,
getattr(self, "max_tokens", "unset"),
)
def _ensure_model_loaded(
self,
) -> Tuple[ORTModelForFeatureExtraction, PreTrainedTokenizer]:
"""Ensure the quantized ONNX model and tokenizer are loaded."""
if self.model is None or self.tokenizer is None:
import gc
gc.collect()
cache_key = f"{self.model_name}_{self.device}"
if cache_key not in self._model_cache:
log_memory_checkpoint("before_model_load")
logging.info(
"Loading quantized model '%s' and tokenizer...",
self.model_name,
)
# Use the original model's tokenizer
tokenizer = AutoTokenizer.from_pretrained(self.original_model_name)
# Load the quantized model from Optimum Hugging Face Hub.
# Some model repos contain multiple ONNX export files; we select a default explicitly.
provider = "CPUExecutionProvider" if self.device == "cpu" else "CUDAExecutionProvider"
file_name = os.getenv("EMBEDDING_ONNX_FILE", "model.onnx")
local_dir = os.getenv("EMBEDDING_ONNX_LOCAL_DIR")
if local_dir and os.path.isdir(local_dir):
# Attempt to load from a local exported directory first.
try:
logging.info(
"Attempting local ONNX load from %s (file=%s)",
local_dir,
file_name,
)
model = ORTModelForFeatureExtraction.from_pretrained(
local_dir,
provider=provider,
file_name=file_name,
)
logging.info("Loaded ONNX model from local directory '%s'", local_dir)
except Exception as e:
logging.warning(
"Local ONNX load failed (%s); " "falling back to hub repo '%s'",
e,
self.model_name,
)
local_dir = None # disable local path for subsequent attempts
if not local_dir:
# Configure ONNX Runtime threading for constrained CPU
intra = int(os.getenv("ORT_INTRA_OP_NUM_THREADS", "1"))
inter = int(os.getenv("ORT_INTER_OP_NUM_THREADS", "1"))
so = ort.SessionOptions()
so.intra_op_num_threads = intra
so.inter_op_num_threads = inter
try:
model = ORTModelForFeatureExtraction.from_pretrained(
self.model_name,
provider=provider,
file_name=file_name,
session_options=so,
)
logging.info(
"Loaded ONNX model file '%s' (intra=%d, inter=%d)",
file_name,
intra,
inter,
)
except Exception as e:
logging.warning(
"Explicit ONNX file '%s' failed (%s); " "retrying with auto-selection.",
file_name,
e,
)
# The key change: we now pass the file_name to the fallback as well
model = ORTModelForFeatureExtraction.from_pretrained(
self.model_name,
provider=provider,
file_name=file_name, # Added this line
session_options=so,
)
logging.info(
"Loaded ONNX model using auto-selection fallback " "(intra=%d, inter=%d)",
intra,
inter,
)
self._model_cache[cache_key] = (model, tokenizer)
logging.info("Quantized model and tokenizer loaded successfully")
log_memory_checkpoint("after_model_load")
else:
logging.info("Using cached quantized model '%s'", self.model_name)
self.model, self.tokenizer = self._model_cache[cache_key]
return self.model, self.tokenizer
@memory_monitor
def embed_text(self, text: str) -> List[float]:
"""Generate embedding for a single text."""
embeddings = self.embed_texts([text])
return embeddings[0]
@memory_monitor
def embed_texts(self, texts: List[str]) -> List[List[float]]:
"""Generate embeddings for multiple texts in batches using ONNX model."""
if not texts:
return []
try:
model, tokenizer = self._ensure_model_loaded()
log_memory_checkpoint("before_batch_embedding")
processed_texts: List[str] = [t if t.strip() else " " for t in texts]
all_embeddings: List[List[float]] = []
for i in range(0, len(processed_texts), self.batch_size):
batch_texts = processed_texts[i : i + self.batch_size]
log_memory_checkpoint(f"batch_start_{i}//{self.batch_size}")
# Tokenize sentences
encoded_input = tokenizer(
batch_texts,
padding=True,
truncation=True,
max_length=self.max_tokens,
return_tensors="np",
)
# Compute token embeddings
model_output = model(**encoded_input)
# Perform pooling
sentence_embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
# Normalize embeddings (L2) using pure NumPy to avoid torch dependency
norms = np.linalg.norm(sentence_embeddings, axis=1, keepdims=True)
norms = np.clip(norms, 1e-12, None)
batch_embeddings = sentence_embeddings / norms
log_memory_checkpoint(f"batch_end_{i}//{self.batch_size}")
for emb in batch_embeddings:
all_embeddings.append(emb.tolist())
import gc
del batch_embeddings
del batch_texts
del encoded_input
del model_output
gc.collect()
if os.getenv("LOG_DETAIL", "verbose") == "verbose":
logging.info("Generated embeddings for %d texts", len(texts))
return all_embeddings
except Exception as e:
logging.error("Failed to generate embeddings for texts: %s", e)
raise
def get_embedding_dimension(self) -> int:
"""Get the dimension of embeddings produced by this model."""
try:
model, _ = self._ensure_model_loaded()
# The dimension can be found in the model's config
return int(model.config.hidden_size)
except Exception:
logging.debug("Failed to get embedding dimension; returning 0")
return 0
def encode_batch(self, texts: List[str]) -> List[List[float]]:
"""Convenience wrapper that returns embeddings for a list of texts."""
return self.embed_texts(texts)
def similarity(self, text1: str, text2: str) -> float:
"""Cosine similarity between embeddings of two texts."""
try:
embeddings = self.embed_texts([text1, text2])
embed1 = np.array(embeddings[0])
embed2 = np.array(embeddings[1])
similarity = np.dot(embed1, embed2) / (np.linalg.norm(embed1) * np.linalg.norm(embed2))
return float(similarity)
except Exception as e:
logging.error("Failed to calculate similarity: %s", e)
return 0.0
|