Spaces:
Sleeping
Sleeping
File size: 14,160 Bytes
2770882 b8bcfc8 2770882 b8bcfc8 2770882 b8bcfc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
# Project Phase 3+ Comprehensive Roadmap
**Project**: MSSE AI Engineering - RAG Application
**Current Status**: Phase 2B Complete β
**Next Phase**: Phase 3 - RAG Core Implementation
**Date**: October 17, 2025
## Executive Summary
With Phase 2B successfully completed and merged, we now have a fully functional semantic search system capable of ingesting policy documents, generating embeddings, and providing intelligent search functionality. The next major milestone is implementing the RAG (Retrieval-Augmented Generation) core functionality to transform our semantic search system into a conversational AI assistant.
## Current State Assessment
### β
**Completed Achievements (Phase 2B)**
#### 1. Production-Ready Semantic Search Pipeline
- **Enhanced Ingestion**: Document processing with embedding generation and batch optimization
- **Search API**: RESTful `/search` endpoint with comprehensive validation and error handling
- **Vector Storage**: ChromaDB integration with metadata management and persistence
- **Quality Assurance**: 90+ tests with comprehensive end-to-end validation
#### 2. Robust Technical Infrastructure
- **CI/CD Pipeline**: GitHub Actions with pre-commit hooks, automated testing, and deployment
- **Code Quality**: 100% compliance with black, isort, flake8 formatting standards
- **Documentation**: Complete API documentation with examples and performance metrics
- **Performance**: Sub-second search response times with optimized memory usage
#### 3. Production Deployment
- **Live Application**: Deployed on Render with health check endpoints
- **Docker Support**: Containerized for consistent environments
- **Database Persistence**: ChromaDB data persists across deployments
- **Error Handling**: Graceful degradation and detailed error reporting
### π **Key Metrics Achieved**
- **Test Coverage**: 90 tests covering all core functionality
- **Processing Performance**: 6-8 chunks/second with embedding generation
- **Search Performance**: <1 second response time for typical queries
- **Content Coverage**: 98 chunks across 22 corporate policy documents
- **Code Quality**: 100% formatting compliance, comprehensive error handling
## Phase 3+ Development Roadmap
### **PHASE 3: RAG Core Implementation** π―
**Objective**: Transform the semantic search system into an intelligent conversational AI assistant that can answer questions about corporate policies using retrieved context.
#### **Issue #23: LLM Integration and Chat Endpoint**
**Priority**: High | **Effort**: Large | **Timeline**: 2-3 weeks
**Description**: Implement the core RAG functionality by integrating a Large Language Model (LLM) and creating a conversational chat interface.
**Technical Requirements**:
1. **LLM Integration**
- Integrate with OpenRouter or Groq API for free-tier LLM access
- Implement API key management and environment configuration
- Add retry logic and rate limiting for API calls
- Support multiple LLM providers with fallback options
2. **Context Retrieval System**
- Extend existing search functionality for context retrieval
- Implement dynamic context window management
- Add relevance filtering and ranking improvements
- Create context summarization for long documents
3. **Prompt Engineering**
- Design system prompt templates for corporate policy Q&A
- Implement context injection strategies
- Create few-shot examples for consistent responses
- Add citation requirements and formatting guidelines
4. **Chat Endpoint Implementation**
- Create `/chat` POST endpoint with conversational interface
- Implement conversation history management (optional)
- Add streaming response support (optional)
- Include comprehensive input validation and sanitization
**Implementation Files**:
```
src/
βββ llm/
β βββ __init__.py
β βββ llm_service.py
β βββ prompt_templates.py
β βββ context_manager.py
βββ rag/
β βββ __init__.py
β βββ rag_pipeline.py
β βββ response_formatter.py
tests/
βββ test_llm/
βββ test_rag/
βββ test_integration/
βββ test_rag_e2e.py
```
**API Specification**:
```json
POST /chat
{
"message": "What is the remote work policy?",
"conversation_id": "optional-uuid",
"include_sources": true
}
Response:
{
"status": "success",
"response": "Based on our corporate policies, remote work is allowed for eligible employees...",
"sources": [
{
"document": "remote_work_policy.md",
"chunk_id": "rw_policy_chunk_3",
"relevance_score": 0.89,
"excerpt": "Employees may work remotely up to 3 days per week..."
}
],
"conversation_id": "uuid-string",
"processing_time_ms": 1250
}
```
**Acceptance Criteria**:
- [ ] LLM integration with proper error handling and fallbacks
- [ ] Chat endpoint returns contextually relevant responses
- [ ] All responses include proper source citations
- [ ] Response quality meets baseline standards (coherent, accurate, policy-grounded)
- [ ] Performance targets: <5 second response time for typical queries
- [ ] Comprehensive test coverage (minimum 15 new tests)
- [ ] Integration with existing search infrastructure
- [ ] Proper guardrails prevent off-topic responses
#### **Issue #24: Guardrails and Response Quality**
**Priority**: High | **Effort**: Medium | **Timeline**: 1-2 weeks
**Description**: Implement comprehensive guardrails to ensure response quality, safety, and adherence to corporate policy scope.
**Technical Requirements**:
1. **Content Guardrails**
- Implement topic relevance filtering
- Add corporate policy scope validation
- Create response length limits and formatting
- Implement citation requirement enforcement
2. **Safety Guardrails**
- Add content moderation for inappropriate queries
- Implement response toxicity detection
- Create data privacy protection measures
- Add rate limiting and abuse prevention
3. **Quality Assurance**
- Implement response coherence validation
- Add factual accuracy checks against source material
- Create confidence scoring for responses
- Add fallback responses for edge cases
**Implementation Details**:
```python
class ResponseGuardrails:
def validate_query(self, query: str) -> ValidationResult
def validate_response(self, response: str, sources: List) -> ValidationResult
def apply_content_filters(self, content: str) -> str
def check_citation_requirements(self, response: str) -> bool
```
**Acceptance Criteria**:
- [ ] System refuses to answer non-policy-related questions
- [ ] All responses include at least one source citation
- [ ] Response length is within configured limits (default: 500 words)
- [ ] Content moderation prevents inappropriate responses
- [ ] Confidence scoring accurately reflects response quality
- [ ] Comprehensive test coverage for edge cases and failure modes
### **PHASE 4: Web Application Enhancement** π
#### **Issue #25: Chat Interface Implementation**
**Priority**: Medium | **Effort**: Medium | **Timeline**: 1-2 weeks
**Description**: Create a user-friendly web interface for interacting with the RAG system.
**Technical Requirements**:
- Modern chat UI with message history
- Real-time response streaming (optional)
- Source citation display with links to original documents
- Mobile-responsive design
- Error handling and loading states
**Files to Create/Modify**:
```
templates/
βββ chat.html (new)
βββ base.html (new)
static/
βββ css/
β βββ chat.css (new)
βββ js/
β βββ chat.js (new)
```
#### **Issue #26: Document Management Interface**
**Priority**: Low | **Effort**: Small | **Timeline**: 1 week
**Description**: Add administrative interface for document management and system monitoring.
**Technical Requirements**:
- Document upload and processing interface
- System health and performance dashboard
- Search analytics and usage metrics
- Database management tools
### **PHASE 5: Evaluation and Quality Assurance** π
#### **Issue #27: Evaluation Framework Implementation**
**Priority**: High | **Effort**: Medium | **Timeline**: 1-2 weeks
**Description**: Implement comprehensive evaluation metrics for RAG response quality.
**Technical Requirements**:
1. **Evaluation Dataset**
- Create 25-30 test questions covering all policy domains
- Develop "gold standard" answers for comparison
- Include edge cases and boundary conditions
- Add question difficulty levels and categories
2. **Automated Metrics**
- **Groundedness**: Verify responses are supported by retrieved context
- **Citation Accuracy**: Ensure citations point to relevant source material
- **Relevance**: Measure how well responses address the question
- **Completeness**: Assess whether responses fully answer questions
- **Consistency**: Verify similar questions get similar answers
3. **Performance Metrics**
- **Latency Measurement**: p50, p95, p99 response times
- **Throughput**: Requests per second capacity
- **Resource Usage**: Memory and CPU utilization
- **Error Rates**: Track and categorize failure modes
**Implementation Structure**:
```
evaluation/
βββ __init__.py
βββ evaluation_dataset.json
βββ metrics/
β βββ groundedness.py
β βββ citation_accuracy.py
β βββ relevance.py
β βββ performance.py
βββ evaluation_runner.py
βββ report_generator.py
```
**Evaluation Questions Example**:
```json
{
"questions": [
{
"id": "q001",
"category": "remote_work",
"difficulty": "basic",
"question": "How many days per week can employees work remotely?",
"expected_answer": "Employees may work remotely up to 3 days per week with manager approval.",
"expected_sources": ["remote_work_policy.md"],
"evaluation_criteria": ["factual_accuracy", "citation_required"]
}
]
}
```
**Acceptance Criteria**:
- [ ] Evaluation dataset covers all major policy areas
- [ ] Automated metrics provide reliable quality scores
- [ ] Performance benchmarks establish baseline expectations
- [ ] Evaluation reports generate actionable insights
- [ ] Results demonstrate system meets quality requirements
- [ ] Continuous evaluation integration for ongoing monitoring
### **PHASE 6: Final Documentation and Deployment** π
#### **Issue #28: Production Deployment and Documentation**
**Priority**: Medium | **Effort**: Medium | **Timeline**: 1 week
**Description**: Prepare the application for production deployment with comprehensive documentation.
**Technical Requirements**:
1. **Production Configuration**
- Environment variable management for LLM API keys
- Database backup and recovery procedures
- Monitoring and alerting setup
- Security hardening and access controls
2. **Comprehensive Documentation**
- Complete `design-and-evaluation.md` with architecture decisions
- Update `deployed.md` with live application URLs and features
- Finalize `README.md` with setup and usage instructions
- Create API documentation with OpenAPI/Swagger specs
3. **Demonstration Materials**
- Record 5-10 minute demonstration video
- Create slide deck explaining architecture and evaluation results
- Prepare code walkthrough materials
- Document key design decisions and trade-offs
**Documentation Structure**:
```
docs/
βββ architecture/
β βββ system_overview.md
β βββ api_reference.md
β βββ deployment_guide.md
βββ evaluation/
β βββ evaluation_results.md
β βββ performance_benchmarks.md
βββ demonstration/
βββ demo_script.md
βββ video_outline.md
```
## Implementation Strategy
### **Development Approach**
1. **Test-Driven Development**: Write tests before implementation for all new features
2. **Incremental Integration**: Build and test each component individually before integration
3. **Continuous Deployment**: Maintain working deployments throughout development
4. **Performance Monitoring**: Establish metrics and monitoring from the beginning
### **Risk Management**
1. **LLM API Dependencies**: Implement multiple providers with graceful fallbacks
2. **Response Quality**: Establish quality gates and comprehensive evaluation
3. **Performance Scaling**: Design with scalability in mind from the start
4. **Data Privacy**: Ensure no sensitive data is transmitted to external APIs
### **Timeline Summary**
- **Phase 3**: 3-4 weeks (LLM integration + guardrails)
- **Phase 4**: 2-3 weeks (UI enhancement + management interface)
- **Phase 5**: 1-2 weeks (evaluation framework)
- **Phase 6**: 1 week (documentation + deployment)
**Total Estimated Timeline**: 7-10 weeks for complete implementation
### **Success Metrics**
- **Functionality**: All core RAG features working as specified
- **Quality**: Evaluation metrics demonstrate high response quality
- **Performance**: System meets latency and throughput requirements
- **Reliability**: Comprehensive error handling and graceful degradation
- **Usability**: Intuitive interface with clear user feedback
- **Maintainability**: Well-documented, tested, and modular codebase
## Getting Started with Phase 3
### **Immediate Next Steps**
1. **Environment Setup**: Configure LLM API keys (OpenRouter/Groq)
2. **Create Issue #23**: Set up detailed GitHub issue for LLM integration
3. **Design Review**: Finalize prompt templates and context strategies
4. **Test Planning**: Design comprehensive test cases for RAG functionality
5. **Branch Strategy**: Create `feat/rag-core-implementation` development branch
### **Key Design Decisions to Make**
1. **LLM Provider Selection**: OpenRouter vs Groq vs others
2. **Context Window Strategy**: How much context to provide to LLM
3. **Response Format**: Structured vs natural language responses
4. **Conversation Management**: Stateless vs conversation history
5. **Deployment Strategy**: Single service vs microservices
This roadmap provides a clear path from our current semantic search system to a full-featured RAG application ready for production deployment and evaluation.
|