Spaces:
Sleeping
Sleeping
File size: 14,004 Bytes
dca679b 9988b25 dca679b 9988b25 dca679b 159faf0 dca679b 159faf0 dca679b 159faf0 dca679b 159faf0 dca679b 159faf0 dca679b 159faf0 dca679b 159faf0 dca679b 159faf0 dca679b 9988b25 dca679b 9988b25 dca679b 159faf0 dca679b 159faf0 dca679b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
#!/usr/bin/env python3
"""
Migration script to move data from ChromaDB to PostgreSQL with data optimization.
This script reduces data size to fit within Render's 1GB PostgreSQL free tier limit.
"""
import gc
import logging
import os
import re
import sys
from typing import Any, Dict, List, Optional
# Add the src directory to the path
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..", "src"))
from src.config import ( # noqa: E402
COLLECTION_NAME,
MAX_DOCUMENT_LENGTH,
MAX_DOCUMENTS_IN_MEMORY,
VECTOR_DB_PERSIST_PATH,
)
from src.embedding.embedding_service import EmbeddingService # noqa: E402
from src.vector_db.postgres_vector_service import PostgresVectorService # noqa: E402
from src.vector_store.vector_db import VectorDatabase # noqa: E402
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
class DataOptimizer:
"""Optimizes document data to reduce storage requirements."""
@staticmethod
def summarize_text(text: str, max_length: int = MAX_DOCUMENT_LENGTH) -> str:
"""
Summarize text to reduce storage while preserving key information.
Args:
text: Original text
max_length: Maximum length for summarized text
Returns:
Summarized text
"""
if len(text) <= max_length:
return text.strip()
# Simple extractive summarization: keep first few sentences
sentences = re.split(r"[.!?]+", text)
summary = ""
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
# Check if adding this sentence would exceed limit
if len(summary + sentence + ".") > max_length:
break
summary += sentence + ". "
# If summary is too short, take first max_length characters
if len(summary) < max_length // 4:
summary = text[:max_length].strip()
return summary.strip()
@staticmethod
def clean_metadata(metadata: Dict[str, Any]) -> Dict[str, Any]:
"""
Clean metadata to keep only essential fields.
Args:
metadata: Original metadata
Returns:
Cleaned metadata with only essential fields
"""
essential_fields = {
"source",
"title",
"page",
"chunk_id",
"document_type",
"created_at",
"file_path",
"section",
}
cleaned = {}
for key, value in metadata.items():
if key in essential_fields and value is not None:
# Convert to simple types and truncate long strings
if isinstance(value, str) and len(value) > 100:
cleaned[key] = value[:100]
elif isinstance(value, (str, int, float, bool)):
cleaned[key] = value
return cleaned
@staticmethod
def should_include_document(metadata: Dict[str, Any], content: str) -> bool:
"""
Decide whether to include a document based on quality metrics.
Args:
metadata: Document metadata
content: Document content
Returns:
True if document should be included
"""
# Skip very short documents (likely not useful)
if len(content.strip()) < 50:
return False
# Skip documents with no meaningful content
if not re.search(r"[a-zA-Z]{3,}", content):
return False
# Prioritize certain document types if available
doc_type = metadata.get("document_type", "").lower()
if doc_type in ["policy", "procedure", "guideline"]:
return True
return True
class ChromaToPostgresMigrator:
"""Migrates data from ChromaDB to PostgreSQL with optimization."""
def __init__(self, database_url: Optional[str] = None):
"""
Initialize the migrator.
Args:
database_url: PostgreSQL connection string
"""
self.database_url = database_url or os.getenv("DATABASE_URL")
if not self.database_url:
raise ValueError("DATABASE_URL environment variable is required")
self.optimizer = DataOptimizer()
self.embedding_service = None
self.total_migrated = 0
self.total_skipped = 0
def initialize_services(self):
"""Initialize embedding service and database connections."""
logger.info("Initializing services...")
# Initialize embedding service
self.embedding_service = EmbeddingService()
# Initialize ChromaDB (source)
self.chroma_db = VectorDatabase(persist_path=VECTOR_DB_PERSIST_PATH, collection_name=COLLECTION_NAME)
# Initialize PostgreSQL (destination)
self.postgres_service = PostgresVectorService(connection_string=self.database_url, table_name=COLLECTION_NAME)
logger.info("Services initialized successfully")
def get_chroma_documents(self, batch_size: int = MAX_DOCUMENTS_IN_MEMORY) -> List[Dict[str, Any]]:
"""
Retrieve all documents from ChromaDB in batches.
Args:
batch_size: Number of documents to retrieve per batch
Yields:
Batches of documents
"""
try:
total_count = self.chroma_db.get_count()
logger.info(f"Found {total_count} documents in ChromaDB")
if total_count == 0:
return
# Get all documents (ChromaDB doesn't have native pagination)
collection = self.chroma_db.get_collection()
all_data = collection.get(include=["documents", "metadatas", "embeddings"])
if not all_data or not all_data.get("documents"):
logger.warning("No documents found in ChromaDB collection")
return
# Process in batches
documents = all_data["documents"]
metadatas = all_data.get("metadatas", [{}] * len(documents))
embeddings = all_data.get("embeddings", [])
ids = all_data.get("ids", [])
for i in range(0, len(documents), batch_size):
batch_end = min(i + batch_size, len(documents))
batch_docs = documents[i:batch_end]
batch_metadata = metadatas[i:batch_end] if metadatas else [{}] * len(batch_docs)
batch_embeddings = embeddings[i:batch_end] if embeddings else []
batch_ids = ids[i:batch_end] if ids else []
yield {
"documents": batch_docs,
"metadatas": batch_metadata,
"embeddings": batch_embeddings,
"ids": batch_ids,
}
except Exception as e:
logger.error(f"Error retrieving ChromaDB documents: {e}")
raise
def process_batch(self, batch: Dict[str, Any]) -> Dict[str, int]:
"""
Process a batch of documents with optimization.
Args:
batch: Batch of documents from ChromaDB
Returns:
Dictionary with processing statistics
"""
documents = batch["documents"]
metadatas = batch["metadatas"]
embeddings = batch["embeddings"]
processed_docs = []
processed_metadata = []
processed_embeddings = []
stats = {"processed": 0, "skipped": 0, "reembedded": 0}
for i, (doc, metadata) in enumerate(zip(documents, metadatas)):
# Clean and optimize document
cleaned_metadata = self.optimizer.clean_metadata(metadata or {})
# Check if we should include this document
if not self.optimizer.should_include_document(cleaned_metadata, doc):
stats["skipped"] += 1
continue
# Summarize document content
summarized_doc = self.optimizer.summarize_text(doc)
# Use existing embedding if available and document wasn't changed much
if embeddings and i < len(embeddings) and len(doc) == len(summarized_doc):
# Document unchanged, use existing embedding
embedding = embeddings[i]
else:
# Document changed, need new embedding
try:
embedding = self.embedding_service.generate_embeddings([summarized_doc])[0]
stats["reembedded"] += 1
except Exception as e:
logger.warning(f"Failed to generate embedding for document {i}: {e}")
stats["skipped"] += 1
continue
processed_docs.append(summarized_doc)
processed_metadata.append(cleaned_metadata)
processed_embeddings.append(embedding)
stats["processed"] += 1
# Add processed documents to PostgreSQL
if processed_docs:
try:
doc_ids = self.postgres_service.add_documents(
texts=processed_docs,
embeddings=processed_embeddings,
metadatas=processed_metadata,
)
logger.info(f"Added {len(doc_ids)} documents to PostgreSQL")
except Exception as e:
logger.error(f"Failed to add documents to PostgreSQL: {e}")
raise
# Force garbage collection
gc.collect()
return stats
def migrate(self) -> Dict[str, int]:
"""
Perform the complete migration.
Returns:
Migration statistics
"""
logger.info("Starting ChromaDB to PostgreSQL migration...")
self.initialize_services()
# Clear existing PostgreSQL data
logger.info("Clearing existing PostgreSQL data...")
deleted_count = self.postgres_service.delete_all_documents()
logger.info(f"Deleted {deleted_count} existing documents from PostgreSQL")
total_stats = {"processed": 0, "skipped": 0, "reembedded": 0}
batch_count = 0
try:
# Process documents in batches
for batch in self.get_chroma_documents():
batch_count += 1
logger.info(f"Processing batch {batch_count}...")
batch_stats = self.process_batch(batch)
# Update totals
for key in total_stats:
total_stats[key] += batch_stats[key]
logger.info(f"Batch {batch_count} complete: {batch_stats}")
# Memory cleanup between batches
gc.collect()
# Final statistics
logger.info("Migration completed successfully!")
logger.info(f"Final statistics: {total_stats}")
# Verify migration
postgres_info = self.postgres_service.get_collection_info()
logger.info(f"PostgreSQL collection info: {postgres_info}")
return total_stats
except Exception as e:
logger.error(f"Migration failed: {e}")
raise
def test_migration(self, test_query: str = "policy") -> Dict[str, Any]:
"""
Test the migrated data by performing a search.
Args:
test_query: Query to test with
Returns:
Test results
"""
logger.info(f"Testing migration with query: '{test_query}'")
try:
# Generate query embedding
query_embedding = self.embedding_service.generate_embeddings([test_query])[0]
# Search PostgreSQL
results = self.postgres_service.similarity_search(query_embedding, k=5)
logger.info("Test search returned %d results", len(results))
for i, result in enumerate(results):
logger.info(
"Result %d: %s... (score: %.3f)"
% (
i + 1,
result.get("content", "")[:100],
result.get("similarity_score", 0),
)
)
return {
"query": test_query,
"results_count": len(results),
"results": results,
}
except Exception as e:
logger.error(f"Migration test failed: {e}")
return {"error": str(e)}
def main():
"""Main migration function."""
import argparse
parser = argparse.ArgumentParser(description="Migrate ChromaDB to PostgreSQL")
parser.add_argument("--database-url", help="PostgreSQL connection URL")
parser.add_argument("--test-only", action="store_true", help="Only run migration test")
parser.add_argument(
"--dry-run",
action="store_true",
help="Show what would be migrated without actually migrating",
)
args = parser.parse_args()
try:
migrator = ChromaToPostgresMigrator(database_url=args.database_url)
if args.test_only:
# Only test existing migration
migrator.initialize_services()
results = migrator.test_migration()
print(f"Test results: {results}")
elif args.dry_run:
# Show what would be migrated
migrator.initialize_services()
total_docs = migrator.chroma_db.get_count()
logger.info(f"Would migrate {total_docs} documents from ChromaDB to PostgreSQL")
else:
# Perform actual migration
stats = migrator.migrate()
logger.info(f"Migration complete: {stats}")
# Test the migration
test_results = migrator.test_migration()
logger.info(f"Migration test: {test_results}")
except Exception as e:
logger.error(f"Migration script failed: {e}")
sys.exit(1)
if __name__ == "__main__":
main()
|