Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,45 +1,40 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
-
from apify_client import ApifyClient
|
| 4 |
import requests
|
|
|
|
| 5 |
|
| 6 |
-
# Function to fetch Google Maps info using the
|
| 7 |
def fetch_google_maps_info(website_name):
|
| 8 |
apify_client = ApifyClient("apify_api_uz0y556N4IG2aLcESj67kmnGSUpHF12XAkLp")
|
| 9 |
run_input = {"searchStringsArray": [website_name]}
|
| 10 |
-
run = apify_client.actor("
|
| 11 |
items = list(apify_client.dataset(run["defaultDatasetId"]).iterate_items())
|
| 12 |
return items[0] if items else None
|
| 13 |
|
| 14 |
-
# Function to fetch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
def fetch_customer_reviews(location_query):
|
| 16 |
client = ApifyClient("apify_api_uz0y556N4IG2aLcESj67kmnGSUpHF12XAkLp")
|
| 17 |
run_input = {
|
| 18 |
"searchStringsArray": ["restaurant"],
|
| 19 |
"locationQuery": location_query,
|
| 20 |
-
"maxCrawledPlacesPerSearch": 50,
|
| 21 |
"language": "en",
|
| 22 |
-
"maxImages": None,
|
| 23 |
-
"onlyDataFromSearchPage": False,
|
| 24 |
-
"includeWebResults": False,
|
| 25 |
-
"deeperCityScrape": False,
|
| 26 |
-
"maxReviews": None,
|
| 27 |
-
"oneReviewPerRow": False,
|
| 28 |
-
"reviewsSort": "newest",
|
| 29 |
-
"reviewsFilterString": "",
|
| 30 |
-
"scrapeReviewerName": True,
|
| 31 |
-
"scrapeReviewerId": True,
|
| 32 |
-
"scrapeReviewerUrl": True,
|
| 33 |
-
"scrapeReviewId": True,
|
| 34 |
-
"scrapeReviewUrl": True,
|
| 35 |
-
"scrapeResponseFromOwnerText": True,
|
| 36 |
-
"countryCode": None,
|
| 37 |
-
"searchMatching": "all",
|
| 38 |
-
"placeMinimumStars": "",
|
| 39 |
-
"skipClosedPlaces": False,
|
| 40 |
-
"allPlacesNoSearchAction": "",
|
| 41 |
}
|
| 42 |
-
run = client.actor("
|
| 43 |
return list(client.dataset(run["defaultDatasetId"]).iterate_items())
|
| 44 |
|
| 45 |
# Streamlit app for Data Visualization
|
|
@@ -49,19 +44,26 @@ st.title("Data Visualization")
|
|
| 49 |
website_name = st.text_input("Enter a website / company name:")
|
| 50 |
|
| 51 |
if website_name:
|
|
|
|
|
|
|
|
|
|
| 52 |
# Fetch Google Maps data
|
| 53 |
google_maps_data = fetch_google_maps_info(website_name)
|
|
|
|
| 54 |
|
| 55 |
if google_maps_data:
|
| 56 |
location_query = google_maps_data.get("locationQuery")
|
| 57 |
reviews_data = fetch_customer_reviews(location_query)
|
| 58 |
-
|
| 59 |
-
|
|
|
|
| 60 |
# ... (use the original display code for Google Maps data here) ...
|
| 61 |
-
|
| 62 |
-
# Display reviews_data
|
| 63 |
-
|
| 64 |
st.subheader("Customer Reviews from New API")
|
| 65 |
-
st.table(
|
|
|
|
|
|
|
| 66 |
else:
|
| 67 |
st.write("No results found for this website / company name on Google Maps.")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
|
|
|
| 3 |
import requests
|
| 4 |
+
from apify_client import ApifyClient
|
| 5 |
|
| 6 |
+
# Function to fetch Google Maps info using the nwua9Gu5YrADL7ZDj actor
|
| 7 |
def fetch_google_maps_info(website_name):
|
| 8 |
apify_client = ApifyClient("apify_api_uz0y556N4IG2aLcESj67kmnGSUpHF12XAkLp")
|
| 9 |
run_input = {"searchStringsArray": [website_name]}
|
| 10 |
+
run = apify_client.actor("nwua9Gu5YrADL7ZDj").call(run_input=run_input)
|
| 11 |
items = list(apify_client.dataset(run["defaultDatasetId"]).iterate_items())
|
| 12 |
return items[0] if items else None
|
| 13 |
|
| 14 |
+
# Function to fetch weather info from OpenWeatherMap API
|
| 15 |
+
def fetch_weather_info(lat, lon):
|
| 16 |
+
API_KEY = "91b23cab82ee530b2052c8757e343b0d"
|
| 17 |
+
url = f"https://api.openweathermap.org/data/3.0/onecall?lat={lat}&lon={lon}&exclude=hourly,daily&appid={API_KEY}"
|
| 18 |
+
response = requests.get(url)
|
| 19 |
+
return response.json()
|
| 20 |
+
|
| 21 |
+
# Function to fetch website content using the moJRLRc85AitArpNN actor
|
| 22 |
+
def fetch_website_content(website_url):
|
| 23 |
+
apify_client = ApifyClient("apify_api_uz0y556N4IG2aLcESj67kmnGSUpHF12XAkLp")
|
| 24 |
+
run_input = {"url": website_url}
|
| 25 |
+
run = apify_client.actor("moJRLRc85AitArpNN").call(run_input=run_input)
|
| 26 |
+
items = list(apify_client.dataset(run["defaultDatasetId"]).iterate_items())
|
| 27 |
+
return items if items else None
|
| 28 |
+
|
| 29 |
+
# Function to fetch customer reviews using the Xb8osYTtOjlsgI6k9 actor
|
| 30 |
def fetch_customer_reviews(location_query):
|
| 31 |
client = ApifyClient("apify_api_uz0y556N4IG2aLcESj67kmnGSUpHF12XAkLp")
|
| 32 |
run_input = {
|
| 33 |
"searchStringsArray": ["restaurant"],
|
| 34 |
"locationQuery": location_query,
|
|
|
|
| 35 |
"language": "en",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
}
|
| 37 |
+
run = client.actor("Xb8osYTtOjlsgI6k9").call(run_input=run_input)
|
| 38 |
return list(client.dataset(run["defaultDatasetId"]).iterate_items())
|
| 39 |
|
| 40 |
# Streamlit app for Data Visualization
|
|
|
|
| 44 |
website_name = st.text_input("Enter a website / company name:")
|
| 45 |
|
| 46 |
if website_name:
|
| 47 |
+
# Initialize the progress bar
|
| 48 |
+
progress_bar = st.progress(0)
|
| 49 |
+
|
| 50 |
# Fetch Google Maps data
|
| 51 |
google_maps_data = fetch_google_maps_info(website_name)
|
| 52 |
+
progress_bar.progress(33)
|
| 53 |
|
| 54 |
if google_maps_data:
|
| 55 |
location_query = google_maps_data.get("locationQuery")
|
| 56 |
reviews_data = fetch_customer_reviews(location_query)
|
| 57 |
+
progress_bar.progress(66)
|
| 58 |
+
|
| 59 |
+
# Display the rest of the Google Maps data
|
| 60 |
# ... (use the original display code for Google Maps data here) ...
|
| 61 |
+
|
| 62 |
+
# Display reviews_data from the new API
|
| 63 |
+
reviews_df = pd.DataFrame(reviews_data)
|
| 64 |
st.subheader("Customer Reviews from New API")
|
| 65 |
+
st.table(reviews_df[['name', 'text', 'publishAt', 'likesCount', 'stars']])
|
| 66 |
+
|
| 67 |
+
progress_bar.progress(100)
|
| 68 |
else:
|
| 69 |
st.write("No results found for this website / company name on Google Maps.")
|