File size: 65,714 Bytes
a422356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eefba1
 
 
a422356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
"""
Llama + FAISS RAG System for Fire Evacuation with Advanced Reasoning

This module implements a RAG (Retrieval-Augmented Generation) system for fire evacuation scenarios
with advanced LLM reasoning techniques including:

1. Chain-of-Thought (CoT) Prompting:
   - Enables step-by-step reasoning through intermediate steps
   - Improves complex problem-solving capabilities
   - Reference: https://arxiv.org/pdf/2201.11903

2. Tree-of-Thoughts (ToT):
   - Maintains multiple reasoning paths
   - Self-evaluates progress through intermediate thoughts
   - Enables deliberate reasoning process
   - Reference: https://arxiv.org/pdf/2305.10601

3. Reflexion:
   - Reinforces language-based agents through linguistic feedback
   - Self-reflection and iterative improvement
   - Reference: https://arxiv.org/pdf/2303.11366

4. CoT with Tools:
   - Combines CoT prompting with external tools
   - Interleaved reasoning and tool usage
   - Reference: https://arxiv.org/pdf/2303.09014

5. Advanced Decoding Strategies:
   - Greedy: Deterministic highest probability
   - Sampling: Random sampling with temperature
   - Beam Search: Explores multiple paths
   - Nucleus (Top-p): Samples from top-p probability mass
   - Temperature: Temperature-based sampling

Downloads Llama model, creates JSON dataset, builds FAISS index, and provides RAG querying
"""
import unsloth
import json
import os
import pickle
import glob
import re
from typing import List, Dict, Any, Optional, Tuple

from pathlib import Path
from enum import Enum
import copy

import numpy as np
import faiss
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from sentence_transformers import SentenceTransformer
import gradio as gr

# Project imports (use helper_files package)
from floor_plan import create_sample_floor_plan, FloorPlan
from sensor_system import create_sample_fire_scenario, SensorSystem
from pathfinding import PathFinder



class FireEvacuationDataExporter:
    """Exports fire evacuation system data to JSON format"""
    
    def __init__(self, floor_plan: FloorPlan, sensor_system: SensorSystem, pathfinder: PathFinder):
        self.floor_plan = floor_plan
        self.sensor_system = sensor_system
        self.pathfinder = pathfinder
    
    def export_room_data(self, room_id: str) -> Dict[str, Any]:
        """Export comprehensive room data to JSON"""
        room = self.floor_plan.get_room(room_id)
        sensor = self.sensor_system.get_sensor_reading(room_id)
        
        if not room or not sensor:
            return {}
        
        return {
            "room_id": room_id,
            "name": room.name,
            "room_type": room.room_type,
            "position": room.position,
            "size": room.size,
            "has_oxygen_cylinder": room.has_oxygen_cylinder,
            "has_fire_extinguisher": room.has_fire_extinguisher,
            "connected_to": [conn[0] for conn in room.connected_to],
            "sensor_data": {
                "fire_detected": sensor.fire_detected,
                "smoke_level": round(sensor.smoke_level, 2),
                "temperature_c": round(sensor.temperature, 1),
                "oxygen_pct": round(sensor.oxygen_level, 1),
                "visibility_pct": round(sensor.visibility, 1),
                "structural_integrity_pct": round(sensor.structural_integrity, 1),
                "fire_growth_rate": round(sensor.fire_growth_rate, 2),
                "flashover_risk": round(sensor.flashover_risk, 2),
                "backdraft_risk": round(sensor.backdraft_risk, 2),
                "heat_radiation": round(sensor.heat_radiation, 2),
                "fire_type": sensor.fire_type,
                "carbon_monoxide_ppm": round(sensor.carbon_monoxide, 1),
                "carbon_dioxide_ppm": round(sensor.carbon_dioxide, 1),
                "hydrogen_cyanide_ppm": round(sensor.hydrogen_cyanide, 2),
                "hydrogen_chloride_ppm": round(sensor.hydrogen_chloride, 2),
                "wind_direction": round(sensor.wind_direction, 1),
                "wind_speed": round(sensor.wind_speed, 2),
                "air_pressure": round(sensor.air_pressure, 2),
                "humidity": round(sensor.humidity, 1),
                "occupancy_density": round(sensor.occupancy_density, 2),
                "mobility_limitations": sensor.mobility_limitations,
                "panic_level": round(sensor.panic_level, 2),
                "evacuation_progress": round(sensor.evacuation_progress, 1),
                "sprinkler_active": sensor.sprinkler_active,
                "emergency_lighting": sensor.emergency_lighting,
                "elevator_available": sensor.elevator_available,
                "stairwell_clear": sensor.stairwell_clear,
                "exit_accessible": sensor.exit_accessible,
                "exit_capacity": sensor.exit_capacity,
                "ventilation_active": sensor.ventilation_active,
                "time_since_fire_start": sensor.time_since_fire_start,
                "estimated_time_to_exit": sensor.estimated_time_to_exit,
                "emergency_comm_working": sensor.emergency_comm_working,
                "wifi_signal_strength": round(sensor.wifi_signal_strength, 1),
                "danger_score": round(sensor.calculate_danger_score(), 1),
                "passable": sensor.is_passable()
            }
        }
    
    def export_route_data(self, start_location: str = "R1") -> Dict[str, Any]:
        """Export all evacuation routes with detailed information"""
        routes = self.pathfinder.find_all_evacuation_routes(start_location)
        
        route_data = {
            "timestamp_sec": 0,
            "start_location": start_location,
            "total_routes": len(routes),
            "routes": []
        }
        
        for idx, (exit_id, path, risk) in enumerate(routes, 1):
            route_info = {
                "route_id": f"Route {idx}",
                "exit": exit_id,
                "path": path,
                "metrics": {
                    "avg_danger": round(risk['avg_danger'], 2),
                    "max_danger": round(risk['max_danger'], 2),
                    "max_danger_location": risk['max_danger_location'],
                    "total_danger": round(risk['total_danger'], 2),
                    "path_length": risk['path_length'],
                    "has_fire": risk['has_fire'],
                    "has_oxygen_hazard": risk['has_oxygen_hazard'],
                    "passable": risk['passable'],
                    "risk_factors": risk['risk_factors']
                },
                "nodes": []
            }
            
            # Add detailed node information
            for room_id in path:
                node_data = self.export_room_data(room_id)
                if node_data:
                    route_info["nodes"].append(node_data)
            
            route_data["routes"].append(route_info)
        
        return route_data
    
    def export_all_rooms(self) -> List[Dict[str, Any]]:
        """Export all rooms as separate documents"""
        all_rooms = []
        for room_id in self.floor_plan.rooms:
            room_data = self.export_room_data(room_id)
            if room_data:
                all_rooms.append(room_data)
        return all_rooms
    
    def export_to_json(self, output_path: str, start_location: str = "R1"):
        """Export complete dataset to JSON file"""
        data = {
            "floor_plan": {
                "floor_name": self.floor_plan.floor_name,
                "total_rooms": len(self.floor_plan.rooms),
                "exits": self.floor_plan.exits
            },
            "all_rooms": self.export_all_rooms(),
            "evacuation_routes": self.export_route_data(start_location)
        }
        
        with open(output_path, 'w', encoding='utf-8') as f:
            json.dump(data, f, indent=2, ensure_ascii=False)
        
        print(f"[OK] Exported data to {output_path}")
        return data


class ReasoningMode(Enum):
    """Enumeration of reasoning modes"""
    STANDARD = "standard"
    CHAIN_OF_THOUGHT = "chain_of_thought"
    TREE_OF_THOUGHTS = "tree_of_thoughts"
    REFLEXION = "reflexion"
    COT_WITH_TOOLS = "cot_with_tools"


class DecodingStrategy(Enum):
    """Enumeration of decoding strategies"""
    GREEDY = "greedy"
    SAMPLING = "sampling"
    BEAM_SEARCH = "beam_search"
    NUCLEUS = "nucleus"
    TEMPERATURE = "temperature"


class FireEvacuationRAG:
    """RAG system using FAISS for retrieval and Llama for generation with advanced reasoning"""
    
    def __init__(self, model_name: str = "nvidia/Llama-3.1-Minitron-4B-Width-Base", model_dir: str = "./models", 
                 use_8bit: bool = False, use_unsloth: bool = False, load_in_4bit: bool = True, max_seq_length: int = 2048,
                 reasoning_mode: ReasoningMode = ReasoningMode.CHAIN_OF_THOUGHT,
                 decoding_strategy: DecodingStrategy = DecodingStrategy.NUCLEUS):
        self.model_name = model_name
        self.model_dir = model_dir
        self.local_model_path = os.path.join(model_dir, model_name.replace("/", "_"))
        self.use_8bit = use_8bit
        self.use_unsloth = use_unsloth
        self.load_in_4bit = load_in_4bit
        self.max_seq_length = max_seq_length
        self.reasoning_mode = reasoning_mode
        self.decoding_strategy = decoding_strategy
        self.tokenizer = None
        self.model = None
        self.pipe = None
        self.embedder = None
        self.index = None
        self.documents = []
        self.metadata = []
        self.reflexion_history = []  # Store reflection history for Reflexion
        
        # Create model directory if it doesn't exist
        os.makedirs(self.model_dir, exist_ok=True)
        os.makedirs(self.local_model_path, exist_ok=True)
        
        print(f"Initializing RAG system with model: {model_name}")
        print(f"Model will be saved to: {self.local_model_path}")
        print(f"Reasoning mode: {reasoning_mode.value}")
        print(f"Decoding strategy: {decoding_strategy.value}")
        if use_unsloth:
            print("[*] Unsloth enabled (faster loading and inference)")
            if load_in_4bit:
                print("  - 4-bit quantization enabled (very fast, low memory)")
        elif use_8bit:
            print("[!] 8-bit quantization enabled (faster loading, lower memory, slight quality trade-off)")
    
    def _check_model_files_exist(self, model_path: str) -> bool:
        """Check if model files actually exist (not just config.json)"""
        required_files = [
            "config.json",
            "model.safetensors.index.json"  # Check for sharded model index
        ]
        
        # Check for at least one model file
        model_file_patterns = [
            "model.safetensors",
            "pytorch_model.bin",
            "model-*.safetensors"  # Sharded models
        ]
        
        config_exists = os.path.exists(os.path.join(model_path, "config.json"))
        if not config_exists:
            return False
        
        # Check for model weight files
        for pattern in model_file_patterns:
            if glob.glob(os.path.join(model_path, pattern)):
                return True
        
        # Check for sharded model index
        if os.path.exists(os.path.join(model_path, "model.safetensors.index.json")):
            return True
        
        return False
    
    def download_model(self):
        """Download and load the Llama model, saving weights to local directory"""
        print("Downloading Llama model (this may take a while)...")
        print(f"Model weights will be saved to: {self.local_model_path}")
        
        # Use Unsloth if enabled (much faster loading) - PRIMARY METHOD
        if self.use_unsloth:
            try:
                from unsloth import FastLanguageModel
                from transformers import TextStreamer
                print("[*] Using Unsloth for fast model loading...")
                
                # Check if model name indicates it's already quantized (contains "bnb-4bit" or "bnb-8bit")
                is_pre_quantized = "bnb-4bit" in self.model_name.lower() or "bnb-8bit" in self.model_name.lower()
                
                # For pre-quantized models, don't set load_in_4bit (model is already quantized)
                # For non-quantized models, check if bitsandbytes is available
                if self.load_in_4bit and not is_pre_quantized:
                    try:
                        import bitsandbytes
                        print("[OK] bitsandbytes available for 4-bit quantization")
                    except ImportError:
                        print("[!] bitsandbytes not found. 4-bit quantization requires bitsandbytes.")
                        print("  Install with: pip install bitsandbytes")
                        print("  Falling back to full precision...")
                        self.load_in_4bit = False
                
                # Check if model exists locally
                if self._check_model_files_exist(self.local_model_path):
                    print(f"Loading from local path: {self.local_model_path}")
                    model_path = self.local_model_path
                else:
                    print(f"Downloading model: {self.model_name}")
                    model_path = self.model_name
                
                # ==== Load Model with Unsloth (exact pattern from user) ====
                dtype = None  # Auto-detect dtype
                
                # Try loading with proper error handling for bitsandbytes
                # The model config might have quantization settings that trigger bitsandbytes check
                max_retries = 2
                for attempt in range(max_retries):
                    try:
                        # For pre-quantized models, don't specify load_in_4bit (it's already quantized)
                        if is_pre_quantized or attempt > 0:
                            print("[OK] Loading model without quantization parameters...")
                            # Don't pass any quantization parameters
                            load_kwargs = {
                                "model_name": model_path,
                                "max_seq_length": self.max_seq_length,
                                "dtype": dtype,
                            }
                        else:
                            # For non-quantized models, try quantization if requested
                            load_kwargs = {
                                "model_name": model_path,
                                "max_seq_length": self.max_seq_length,
                                "dtype": dtype,
                            }
                            if self.load_in_4bit:
                                load_kwargs["load_in_4bit"] = True
                        
                        self.model, self.tokenizer = FastLanguageModel.from_pretrained(**load_kwargs)
                        break  # Success, exit retry loop
                        
                    except (ImportError, Exception) as quant_error:
                        error_str = str(quant_error)
                        is_bitsandbytes_error = (
                            "bitsandbytes" in error_str.lower() or 
                            "PackageNotFoundError" in error_str or 
                            "No package metadata" in error_str or
                            "quantization_config" in error_str.lower()
                        )
                        
                        if is_bitsandbytes_error and attempt < max_retries - 1:
                            print(f"[!] Attempt {attempt + 1}: bitsandbytes error detected.")
                            print(f"  Error: {error_str[:150]}...")
                            print("  Retrying without quantization parameters...")
                            continue  # Retry without quantization
                        elif is_bitsandbytes_error:
                            print("[!] bitsandbytes required but not installed.")
                            print("  Options:")
                            print("  1. Install bitsandbytes: pip install bitsandbytes")
                            print("  2. Use a non-quantized model")
                            print("  3. Set USE_UNSLOTH=False to use standard loading")
                            raise ImportError(
                                "bitsandbytes is required for this model. "
                                "Install with: pip install bitsandbytes"
                            ) from quant_error
                        else:
                            # Re-raise if it's a different error
                            raise
                
                # Optimize for inference
                FastLanguageModel.for_inference(self.model)
                
                print("[OK] Model loaded successfully with Unsloth!")
                
                # Verify device
                if torch.cuda.is_available():
                    actual_device = next(self.model.parameters()).device
                    print(f"[OK] Model loaded on {actual_device}!")
                    allocated = torch.cuda.memory_allocated(0) / 1024**3
                    print(f"[OK] GPU Memory allocated: {allocated:.2f} GB")
                else:
                    print("[OK] Model loaded on CPU!")
                
                # Set pipe to model for compatibility (we'll use model directly in generation)
                self.pipe = self.model  # Store model reference for compatibility checks
                
                return  # Exit early, Unsloth loading complete
                
            except ImportError:
                print("[!] Unsloth not installed. Falling back to standard loading.")
                print("  Install with: pip install unsloth")
                self.use_unsloth = False  # Disable unsloth for this session
            except Exception as e:
                print(f"[!] Unsloth loading failed: {e}")
                print("  Falling back to standard loading...")
                self.use_unsloth = False
        
        # Standard loading (original code)
        # Check GPU availability and optimize settings
        device = "cuda" if torch.cuda.is_available() else "cpu"
        if device == "cuda":
            gpu_name = torch.cuda.get_device_name(0)
            gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
            print(f"[OK] GPU detected: {gpu_name}")
            print(f"[OK] GPU Memory: {gpu_memory:.2f} GB")
            # Use bfloat16 for faster loading and inference on GPU
            torch_dtype = torch.bfloat16
            print("[OK] Using bfloat16 precision for faster loading")
        else:
            print("[!] No GPU detected, using CPU (will be slower)")
            torch_dtype = torch.float32
            print("[OK] Using float32 precision for CPU")
        
        # Check for optimized attention implementation
        try:
            import flash_attn  # noqa: F401
            attn_impl = 'flash_attention_2'
            print("[OK] FlashAttention2 available - using for optimal performance")
        except ImportError:
            attn_impl = 'sdpa'  # Scaled Dot Product Attention (built into PyTorch)
            print("[OK] Using SDPA (Scaled Dot Product Attention) for faster inference")
        
        # Check for 8-bit quantization support
        use_quantization = False
        if self.use_8bit and device == "cuda":
            try:
                import bitsandbytes
                use_quantization = True
                print("[OK] 8-bit quantization available - will use for faster loading")
            except ImportError:
                print("[!] 8-bit requested but bitsandbytes not installed, using full precision")
                print("  Install with: pip install bitsandbytes")
        
        try:
            # Check if model already exists locally with actual model files
            if self._check_model_files_exist(self.local_model_path):
                print(f"Found existing model at {self.local_model_path}, loading from local...")
                model_path = self.local_model_path
                load_from_local = True
            else:
                print("Downloading model from HuggingFace...")
                model_path = self.model_name
                load_from_local = False
            
            # Load tokenizer
            print("Loading tokenizer...")
            self.tokenizer = AutoTokenizer.from_pretrained(
                model_path,
                trust_remote_code=True
            )
            
            # Save tokenizer locally if downloaded (wrap in try-except to avoid crashes)
            if not load_from_local:
                try:
                    print("Saving tokenizer to local directory...")
                    self.tokenizer.save_pretrained(self.local_model_path)
                    print(f"[OK] Tokenizer saved to {self.local_model_path}")
                except Exception as save_err:
                    print(f"[!] Warning: Could not save tokenizer locally: {save_err}")
                    print("Continuing without local save...")
            
            # Load model with optimizations
            print("Loading model with optimizations...")
            load_kwargs = {
                "trust_remote_code": True,
                "low_cpu_mem_usage": True,  # Reduces memory usage during loading
                "_attn_implementation": attn_impl,  # Optimized attention
            }
            
            # Add quantization or dtype
            if use_quantization:
                from transformers import BitsAndBytesConfig
                load_kwargs["quantization_config"] = BitsAndBytesConfig(
                    load_in_8bit=True,
                    llm_int8_threshold=6.0
                )
                print("[OK] Using 8-bit quantization for faster loading and lower memory")
            else:
                load_kwargs["torch_dtype"] = torch_dtype
            
            # Use device_map="auto" for GPU, manual placement for CPU
            if device == "cuda":
                try:
                    load_kwargs["device_map"] = "auto"
                    print("[OK] Using device_map='auto' for optimal GPU memory management")
                except Exception as e:
                    print(f"[!] device_map='auto' failed, using manual GPU placement: {e}")
                    load_kwargs.pop("device_map", None)
            
            self.model = AutoModelForCausalLM.from_pretrained(
                model_path,
                **load_kwargs
            )
            
            # Manual device placement if device_map wasn't used
            if device == "cuda" and "device_map" not in load_kwargs:
                self.model = self.model.cuda()
                print("[OK] Model moved to GPU")
            
            # Save model locally if downloaded (wrap in try-except to handle DTensor errors)
            if not load_from_local:
                try:
                    print("Saving model weights to local directory (this may take a while)...")
                    self.model.save_pretrained(
                        self.local_model_path,
                        safe_serialization=True  # Use safetensors format
                    )
                    print(f"[OK] Model saved to {self.local_model_path}")
                except ImportError as import_err:
                    if "DTensor" in str(import_err):
                        print(f"[!] Warning: Could not save model due to PyTorch/transformers compatibility issue: {import_err}")
                        print("This is a known issue with certain versions. Model will work but won't be saved locally.")
                        print("Continuing without local save...")
                    else:
                        raise
                except Exception as save_err:
                    print(f"[!] Warning: Could not save model locally: {save_err}")
                    print("Continuing without local save...")
            
            # Create pipeline with optimizations
            print("Creating pipeline...")
            pipeline_kwargs = {
                "model": self.model,
                "tokenizer": self.tokenizer,
            }
            if device == "cuda":
                pipeline_kwargs["device_map"] = "auto"
            
            self.pipe = pipeline("text-generation", **pipeline_kwargs)
            
            # Verify model device
            if device == "cuda":
                actual_device = next(self.model.parameters()).device
                print(f"[OK] Model loaded successfully on {actual_device}!")
                if torch.cuda.is_available():
                    allocated = torch.cuda.memory_allocated(0) / 1024**3
                    print(f"[OK] GPU Memory allocated: {allocated:.2f} GB")
            else:
                print("[OK] Model loaded successfully on CPU!")
            
        except Exception as e:
            print(f"Error loading model: {e}")
            print("Falling back to pipeline-only loading...")
            try:
                # Determine device and dtype for fallback
                device = "cuda" if torch.cuda.is_available() else "cpu"
                torch_dtype = torch.bfloat16 if device == "cuda" else torch.float32
                
                # Try loading from local path first (only if model files actually exist)
                if self._check_model_files_exist(self.local_model_path):
                    print(f"Attempting to load from local path: {self.local_model_path}")
                    pipeline_kwargs = {
                        "model": self.local_model_path,
                        "trust_remote_code": True,
                        "torch_dtype": torch_dtype,
                    }
                    if device == "cuda":
                        pipeline_kwargs["device_map"] = "auto"
                    self.pipe = pipeline("text-generation", **pipeline_kwargs)
                    # Extract tokenizer from pipeline if available
                    if hasattr(self.pipe, 'tokenizer'):
                        self.tokenizer = self.pipe.tokenizer
                else:
                    print(f"Downloading model: {self.model_name}")
                    pipeline_kwargs = {
                        "model": self.model_name,
                        "trust_remote_code": True,
                        "torch_dtype": torch_dtype,
                    }
                    if device == "cuda":
                        pipeline_kwargs["device_map"] = "auto"
                    self.pipe = pipeline("text-generation", **pipeline_kwargs)
                    # Extract tokenizer from pipeline if available
                    if hasattr(self.pipe, 'tokenizer'):
                        self.tokenizer = self.pipe.tokenizer
                    
                    # Try to save after loading (but don't fail if it doesn't work)
                    try:
                        if hasattr(self.pipe, 'model') and hasattr(self.pipe.model, 'save_pretrained'):
                            print("Attempting to save downloaded model to local directory...")
                            self.pipe.model.save_pretrained(self.local_model_path, safe_serialization=True)
                            if hasattr(self.pipe, 'tokenizer'):
                                self.pipe.tokenizer.save_pretrained(self.local_model_path)
                            print("[OK] Model saved successfully")
                    except ImportError as import_err:
                        if "DTensor" in str(import_err):
                            print(f"[!] Warning: Could not save model due to compatibility issue. Model will work but won't be saved locally.")
                        else:
                            print(f"[!] Warning: Could not save model: {import_err}")
                    except Exception as save_err:
                        print(f"[!] Warning: Could not save model locally: {save_err}")
                    
            except Exception as e2:
                print(f"Pipeline loading also failed: {e2}")
                raise
    
    def load_embedder(self, model_name: str = "all-MiniLM-L6-v2"):
        """Load sentence transformer for embeddings, saving to local directory"""
        embedder_dir = os.path.join(self.model_dir, "embedder", model_name.replace("/", "_"))
        os.makedirs(embedder_dir, exist_ok=True)
        
        print(f"Loading embedding model: {model_name}...")
        print(f"Embedder will be cached in: {embedder_dir}")
        
        # Check if embedder exists locally (check for actual model files, not just config)
        config_path = os.path.join(embedder_dir, "config.json")
        has_model_files = False
        if os.path.exists(config_path):
            # Check if model files exist
            model_files = glob.glob(os.path.join(embedder_dir, "*.safetensors")) + \
                         glob.glob(os.path.join(embedder_dir, "pytorch_model.bin"))
            if model_files or os.path.exists(os.path.join(embedder_dir, "model.safetensors.index.json")):
                has_model_files = True
        
        if has_model_files:
            print(f"Loading embedder from local cache: {embedder_dir}")
            self.embedder = SentenceTransformer(embedder_dir)
        else:
            print("Downloading embedder from HuggingFace...")
            self.embedder = SentenceTransformer(model_name, cache_folder=embedder_dir)
            # Try to save to local directory (but don't fail if it doesn't work)
            try:
                self.embedder.save(embedder_dir)
                print(f"[OK] Embedder saved to {embedder_dir}")
            except ImportError as import_err:
                if "DTensor" in str(import_err):
                    print(f"[!] Warning: Could not save embedder due to PyTorch/transformers compatibility issue: {import_err}")
                    print("This is a known issue with certain versions. Embedder will work but won't be saved locally.")
                    print("Continuing without local save...")
                else:
                    print(f"[!] Warning: Could not save embedder: {import_err}")
            except Exception as save_err:
                print(f"[!] Warning: Could not save embedder locally: {save_err}")
                print("Continuing without local save...")
        
        print("[OK] Embedding model loaded!")
    
    def build_faiss_index(self, documents: List[str], metadata: List[Dict] = None):
        """
        Build FAISS index from documents
        
        Args:
            documents: List of text documents to index
            metadata: Optional metadata for each document
        """
        if not self.embedder:
            self.load_embedder()
        
        print(f"Building FAISS index for {len(documents)} documents...")
        
        # Generate embeddings
        embeddings = self.embedder.encode(documents, show_progress_bar=True)
        embeddings = np.array(embeddings).astype('float32')
        
        # Get dimension
        dimension = embeddings.shape[1]
        
        # Create FAISS index (L2 distance)
        self.index = faiss.IndexFlatL2(dimension)
        
        # Add embeddings to index
        self.index.add(embeddings)
        
        # Store documents and metadata
        self.documents = documents
        self.metadata = metadata if metadata else [{}] * len(documents)
        
        print(f"[OK] FAISS index built with {self.index.ntotal} vectors")
    
    def build_index_from_json(self, json_data: Dict[str, Any]):
        """Build FAISS index from exported JSON data"""
        documents = []
        metadata = []
        
        # Add room documents
        for room in json_data.get("all_rooms", []):
            # Create text representation
            room_text = self._room_to_text(room)
            documents.append(room_text)
            metadata.append({
                "type": "room",
                "room_id": room.get("room_id"),
                "data": room
            })
        
        # Add route documents
        for route in json_data.get("evacuation_routes", {}).get("routes", []):
            route_text = self._route_to_text(route)
            documents.append(route_text)
            metadata.append({
                "type": "route",
                "route_id": route.get("route_id"),
                "exit": route.get("exit"),
                "data": route
            })
        
        # Build index
        self.build_faiss_index(documents, metadata)
    
    def _room_to_text(self, room: Dict[str, Any]) -> str:
        """Convert room data to searchable text"""
        sensor = room.get("sensor_data", {})
        
        text_parts = [
            f"Room {room.get('room_id')} ({room.get('name')})",
            f"Type: {room.get('room_type')}",
        ]
        
        if room.get("has_oxygen_cylinder"):
            text_parts.append("[!]️ OXYGEN CYLINDER PRESENT - EXPLOSION RISK")
        
        if sensor.get("fire_detected"):
            text_parts.append("[FIRE] FIRE DETECTED")
        
        text_parts.extend([
            f"Temperature: {sensor.get('temperature_c')}°C",
            f"Smoke level: {sensor.get('smoke_level')}",
            f"Oxygen: {sensor.get('oxygen_pct')}%",
            f"Visibility: {sensor.get('visibility_pct')}%",
            f"Structural integrity: {sensor.get('structural_integrity_pct')}%",
            f"Danger score: {sensor.get('danger_score')}",
            f"Passable: {sensor.get('passable')}"
        ])
        
        if sensor.get("carbon_monoxide_ppm", 0) > 50:
            text_parts.append(f"[!]️ HIGH CARBON MONOXIDE: {sensor.get('carbon_monoxide_ppm')} ppm")
        
        if sensor.get("flashover_risk", 0) > 0.5:
            text_parts.append(f"[!]️ FLASHOVER RISK: {sensor.get('flashover_risk')*100:.0f}%")
        
        if not sensor.get("exit_accessible", True):
            text_parts.append("[!]️ EXIT BLOCKED")
        
        if sensor.get("occupancy_density", 0) > 0.7:
            text_parts.append(f"[!]️ HIGH CROWD DENSITY: {sensor.get('occupancy_density')*100:.0f}%")
        
        return " | ".join(text_parts)
    
    def _route_to_text(self, route: Dict[str, Any]) -> str:
        """Convert route data to searchable text"""
        metrics = route.get("metrics", {})
        
        text_parts = [
            f"{route.get('route_id')} to {route.get('exit')}",
            f"Path: {' → '.join(route.get('path', []))}",
            f"Average danger: {metrics.get('avg_danger')}",
            f"Max danger: {metrics.get('max_danger')} at {metrics.get('max_danger_location')}",
            f"Passable: {metrics.get('passable')}",
            f"Has fire: {metrics.get('has_fire')}",
            f"Has oxygen hazard: {metrics.get('has_oxygen_hazard')}"
        ]
        
        risk_factors = metrics.get("risk_factors", [])
        if risk_factors:
            text_parts.append(f"Risks: {', '.join(risk_factors[:3])}")
        
        return " | ".join(text_parts)
    
    def search(self, query: str, k: int = 5) -> List[Dict[str, Any]]:
        """
        Search FAISS index for relevant documents
        
        Args:
            query: Search query
            k: Number of results to return
            
        Returns:
            List of relevant documents with metadata
        """
        if not self.index or not self.embedder:
            raise ValueError("Index not built. Call build_faiss_index() first.")
        
        # Encode query
        query_embedding = self.embedder.encode([query])
        query_embedding = np.array(query_embedding).astype('float32')
        
        # Search
        distances, indices = self.index.search(query_embedding, k)
        
        # Return results
        results = []
        for i, idx in enumerate(indices[0]):
            if idx < len(self.documents):
                results.append({
                    "document": self.documents[idx],
                    "metadata": self.metadata[idx],
                    "distance": float(distances[0][i])
                })
        
        return results
    
    def _build_cot_prompt(self, query: str, context: List[str]) -> str:
        """Build Chain-of-Thought prompt with step-by-step reasoning"""
        context_text = "\n".join([f"- {ctx}" for ctx in context])
        
        prompt = f"""You are an expert fire evacuation safety advisor. Use the following context to answer the question concisely.

CONTEXT:
{context_text}

QUESTION: {query}

Think step by step, then provide a brief answer:

REASONING:
1. Analyze available information
2. Identify key safety factors
3. Evaluate risks and prioritize
4. Conclude with recommendation

ANSWER:"""
        return prompt
    
    def _build_tot_prompt(self, query: str, context: List[str], thought: str = "") -> str:
        """Build Tree-of-Thoughts prompt for exploring multiple reasoning paths"""
        context_text = "\n".join([f"- {ctx}" for ctx in context])
        
        if not thought:
            prompt = f"""You are an expert fire evacuation safety advisor. Use the following context to explore different reasoning approaches.

CONTEXT:
{context_text}

QUESTION: {query}

Let's explore different reasoning approaches to solve this problem:

APPROACH 1 - Safety-First Analysis:
"""
        else:
            prompt = f"""CONTEXT:
{context_text}

QUESTION: {query}

CURRENT THOUGHT: {thought}

Evaluate this thought:
- Is this reasoning sound?
- What are the strengths and weaknesses?
- What alternative approaches should we consider?

EVALUATION:
"""
        return prompt
    
    def _build_reflexion_prompt(self, query: str, context: List[str], previous_answer: str = "", 
                                reflection: str = "") -> str:
        """Build Reflexion prompt for self-reflection and improvement"""
        context_text = "\n".join([f"- {ctx}" for ctx in context])
        
        if not previous_answer:
            # Initial answer
            prompt = f"""You are an expert fire evacuation safety advisor. Use the following context to answer the question.

CONTEXT:
{context_text}

QUESTION: {query}

Provide a clear, safety-focused answer based on the context.

ANSWER:"""
        else:
            # Reflection phase
            prompt = f"""You are an expert fire evacuation safety advisor. Review and improve your previous answer.

CONTEXT:
{context_text}

QUESTION: {query}

PREVIOUS ANSWER:
{previous_answer}

REFLECTION:
{reflection}

Now provide an improved answer based on your reflection:

IMPROVED ANSWER:"""
        return prompt
    
    def _build_cot_with_tools_prompt(self, query: str, context: List[str], tool_results: List[str] = None) -> str:
        """Build Chain-of-Thought prompt with tool integration"""
        context_text = "\n".join([f"- {ctx}" for ctx in context])
        
        tool_text = ""
        if tool_results:
            tool_text = "\nTOOL RESULTS:\n" + "\n".join([f"- {result}" for result in tool_results])
        
        prompt = f"""You are an expert fire evacuation safety advisor. Use the following context and tool results to answer the question.

CONTEXT:
{context_text}
{tool_text}

QUESTION: {query}

Let's solve this step by step, using both the context and tool results:

STEP 1 - Understand the question and available data:
"""
        return prompt
    
    def _generate_with_decoding_strategy(self, prompt: str, max_length: int = 500, 
                                        temperature: float = 0.7, top_p: float = 0.9,
                                        num_beams: int = 3, stop_sequences: List[str] = None) -> str:
        """Generate response using specified decoding strategy"""
        if not self.pipe and not self.model:
            raise ValueError("Model not loaded. Call download_model() first.")
        
        try:
            if self.use_unsloth and self.model:
                inputs = self.tokenizer(
                    prompt,
                    return_tensors="pt",
                    truncation=True,
                    max_length=self.max_seq_length
                ).to(self.model.device)
                
                # Configure generation parameters based on decoding strategy
                gen_kwargs = {
                    "max_new_tokens": max_length,
                    "pad_token_id": self.tokenizer.eos_token_id,
                    "eos_token_id": self.tokenizer.eos_token_id,
                }
                
                if self.decoding_strategy == DecodingStrategy.GREEDY:
                    gen_kwargs.update({
                        "do_sample": False,
                        "num_beams": 1
                    })
                elif self.decoding_strategy == DecodingStrategy.SAMPLING:
                    gen_kwargs.update({
                        "do_sample": True,
                        "temperature": temperature,
                        "top_k": 50
                    })
                elif self.decoding_strategy == DecodingStrategy.BEAM_SEARCH:
                    gen_kwargs.update({
                        "do_sample": False,
                        "num_beams": num_beams,
                        "early_stopping": True
                    })
                elif self.decoding_strategy == DecodingStrategy.NUCLEUS:
                    gen_kwargs.update({
                        "do_sample": True,
                        "temperature": temperature,
                        "top_p": top_p,
                        "top_k": 0
                    })
                elif self.decoding_strategy == DecodingStrategy.TEMPERATURE:
                    gen_kwargs.update({
                        "do_sample": True,
                        "temperature": temperature
                    })
                
                with torch.no_grad():
                    outputs = self.model.generate(**inputs, **gen_kwargs)
                
                response = self.tokenizer.batch_decode(
                    outputs, 
                    skip_special_tokens=True
                )[0]
                
                # Extract response after prompt
                if prompt in response:
                    response = response.split(prompt)[-1].strip()
                
                # Post-process to stop at verbose endings
                stop_phrases = [
                    "\n\nHowever, please note",
                    "\n\nAdditionally,",
                    "\n\nLet me know",
                    "\n\nIf you have",
                    "\n\nHere's another",
                    "\n\nQUESTION:",
                    "\n\nLet's break",
                    "\n\nHave a great day",
                    "\n\nI'm here to help"
                ]
                for phrase in stop_phrases:
                    if phrase in response:
                        response = response.split(phrase)[0].strip()
                        break
                
                return response
            else:
                # Use pipeline for standard models
                gen_kwargs = {
                    "max_length": len(self.tokenizer.encode(prompt)) + max_length,
                    "num_return_sequences": 1,
                }
                
                if self.decoding_strategy == DecodingStrategy.GREEDY:
                    gen_kwargs.update({
                        "do_sample": False
                    })
                elif self.decoding_strategy == DecodingStrategy.SAMPLING:
                    gen_kwargs.update({
                        "do_sample": True,
                        "temperature": temperature,
                        "top_k": 50
                    })
                elif self.decoding_strategy == DecodingStrategy.BEAM_SEARCH:
                    gen_kwargs.update({
                        "do_sample": False,
                        "num_beams": num_beams,
                        "early_stopping": True
                    })
                elif self.decoding_strategy == DecodingStrategy.NUCLEUS:
                    gen_kwargs.update({
                        "do_sample": True,
                        "temperature": temperature,
                        "top_p": top_p,
                        "top_k": 0
                    })
                elif self.decoding_strategy == DecodingStrategy.TEMPERATURE:
                    gen_kwargs.update({
                        "do_sample": True,
                        "temperature": temperature
                    })
                
                gen_kwargs["pad_token_id"] = self.tokenizer.eos_token_id if self.tokenizer else None
                
                outputs = self.pipe(prompt, **gen_kwargs)
                response = outputs[0]['generated_text']
                
                # Extract response after prompt
                if prompt in response:
                    response = response.split(prompt)[-1].strip()
                
                # Post-process to stop at verbose endings
                stop_phrases = [
                    "\n\nHowever, please note",
                    "\n\nAdditionally,",
                    "\n\nLet me know",
                    "\n\nIf you have",
                    "\n\nHere's another",
                    "\n\nQUESTION:",
                    "\n\nLet's break",
                    "\n\nHave a great day",
                    "\n\nI'm here to help"
                ]
                for phrase in stop_phrases:
                    if phrase in response:
                        response = response.split(phrase)[0].strip()
                        break
            
            return response
            
        except Exception as e:
            return f"Error generating response: {e}"
    
    def _chain_of_thought_reasoning(self, query: str, context: List[str], max_length: int = 500) -> Tuple[str, str]:
        """Generate response using Chain-of-Thought reasoning
        
        Returns:
            Tuple of (full_reasoning, final_answer)
        """
        prompt = self._build_cot_prompt(query, context)
        # Use shorter max_length for CoT to prevent verbosity
        full_response = self._generate_with_decoding_strategy(prompt, max_length=min(max_length, 300))
        
        # Extract reasoning steps (everything before ANSWER)
        reasoning = ""
        if "REASONING:" in full_response:
            reasoning_parts = full_response.split("REASONING:")
            if len(reasoning_parts) > 1:
                reasoning_section = reasoning_parts[1].split("ANSWER:")[0] if "ANSWER:" in reasoning_parts[1] else reasoning_parts[1]
                reasoning = reasoning_section.strip()
        elif "ANSWER:" in full_response:
            reasoning = full_response.split("ANSWER:")[0].strip()
        else:
            # Try to extract reasoning from numbered steps
            lines = full_response.split('\n')
            reasoning_lines = []
            for line in lines:
                if line.strip().startswith(('1.', '2.', '3.', '4.', '5.', 'Step', 'STEP')):
                    reasoning_lines.append(line.strip())
                elif "ANSWER" in line.upper():
                    break
                elif reasoning_lines:  # Continue collecting if we've started
                    reasoning_lines.append(line.strip())
            reasoning = '\n'.join(reasoning_lines)
        
        # Extract final answer (everything after ANSWER:)
        final_answer = full_response
        if "ANSWER:" in full_response:
            answer_parts = full_response.split("ANSWER:")
            if len(answer_parts) > 1:
                answer_text = answer_parts[-1].strip()
                # Stop at common continuation markers
                stop_markers = [
                    "\n\nHowever, please note",
                    "\n\nAdditionally,",
                    "\n\nLet me know",
                    "\n\nIf you have",
                    "\n\nHere's another",
                    "\n\nQUESTION:",
                    "\n\nLet's break",
                    "\n\nHave a great day",
                    "\n\nI'm here to help",
                    "\n\nThese general guidelines",
                    "\n\nIf you have any further"
                ]
                for marker in stop_markers:
                    if marker in answer_text:
                        answer_text = answer_text.split(marker)[0].strip()
                        break
                # Also limit to first 2-3 sentences if it's still too long
                sentences = answer_text.split('. ')
                if len(sentences) > 3:
                    answer_text = '. '.join(sentences[:3])
                    if not answer_text.endswith('.'):
                        answer_text += '.'
                final_answer = answer_text
        
        # Clean up reasoning - remove verbose parts
        if reasoning:
            # Remove common verbose endings
            verbose_endings = [
                "However, please note",
                "Additionally,",
                "Let me know",
                "If you have",
                "Here's another",
                "Have a great day",
                "I'm here to help"
            ]
            for ending in verbose_endings:
                if ending in reasoning:
                    reasoning = reasoning.split(ending)[0].strip()
                    break
        
        return reasoning or "Reasoning steps generated", final_answer
    
    def _tree_of_thoughts_reasoning(self, query: str, context: List[str], max_length: int = 500, 
                                     max_thoughts: int = 3) -> Tuple[str, str]:
        """Generate response using Tree-of-Thoughts reasoning
        
        Returns:
            Tuple of (full_reasoning, final_answer)
        """
        thoughts = []
        reasoning_log = []
        
        # Generate initial thoughts
        for i in range(max_thoughts):
            thought_prompt = self._build_tot_prompt(query, context, 
                                                   thought=f"Exploring approach {i+1}")
            thought = self._generate_with_decoding_strategy(thought_prompt, max_length // max_thoughts)
            thoughts.append(thought)
            reasoning_log.append(f"APPROACH {i+1}:\n{thought}\n")
        
        # Evaluate thoughts and select best
        evaluation_prompt = f"""Evaluate these different reasoning approaches for answering the question:

QUESTION: {query}

APPROACHES:
"""
        for i, thought in enumerate(thoughts, 1):
            evaluation_prompt += f"\nAPPROACH {i}:\n{thought}\n"
        
        evaluation_prompt += "\nWhich approach is most sound and complete? Provide the best answer based on the evaluation.\n\nBEST ANSWER:"
        
        final_response = self._generate_with_decoding_strategy(evaluation_prompt, max_length)
        
        full_reasoning = "\n".join(reasoning_log) + f"\n\nEVALUATION:\n{final_response}"
        return full_reasoning, final_response
    
    def _reflexion_reasoning(self, query: str, context: List[str], max_length: int = 500, 
                            max_iterations: int = 2) -> Tuple[str, str]:
        """Generate response using Reflexion (self-reflection and improvement)
        
        Returns:
            Tuple of (full_reasoning, final_answer)
        """
        reasoning_log = []
        
        # Initial answer
        initial_prompt = self._build_reflexion_prompt(query, context)
        answer = self._generate_with_decoding_strategy(initial_prompt, max_length)
        reasoning_log.append(f"INITIAL ANSWER:\n{answer}\n")
        
        # Reflection and improvement iterations
        for iteration in range(max_iterations):
            # Generate reflection
            reflection_prompt = f"""Review this answer for a fire evacuation safety question:

QUESTION: {query}

CURRENT ANSWER:
{answer}

What could be improved? Consider:
- Accuracy of safety information
- Completeness of the response
- Clarity and actionability
- Missing critical safety factors

REFLECTION:"""
            
            reflection = self._generate_with_decoding_strategy(reflection_prompt, max_length // 2)
            reasoning_log.append(f"ITERATION {iteration + 1} - REFLECTION:\n{reflection}\n")
            
            # Generate improved answer
            improved_prompt = self._build_reflexion_prompt(query, context, answer, reflection)
            improved_answer = self._generate_with_decoding_strategy(improved_prompt, max_length)
            reasoning_log.append(f"ITERATION {iteration + 1} - IMPROVED ANSWER:\n{improved_answer}\n")
            
            # Check if improvement is significant (simple heuristic)
            if len(improved_answer) > len(answer) * 0.8:  # At least 80% of original length
                answer = improved_answer
            else:
                break  # Stop if answer becomes too short
        
        self.reflexion_history.append({
            "query": query,
            "final_answer": answer,
            "iterations": iteration + 1
        })
        
        full_reasoning = "\n".join(reasoning_log)
        return full_reasoning, answer
    
    def _cot_with_tools_reasoning(self, query: str, context: List[str], max_length: int = 500) -> Tuple[str, str]:
        """Generate response using Chain-of-Thought with tool integration
        
        Returns:
            Tuple of (full_reasoning, final_answer)
        """
        reasoning_log = []
        
        # Simulate tool calls (in real implementation, these would call actual tools)
        tool_results = []
        
        # Tool 1: Route analysis
        if "route" in query.lower() or "path" in query.lower():
            tool_result = "Tool: Route Analyzer - Found 3 evacuation routes with risk scores"
            tool_results.append(tool_result)
            reasoning_log.append(f"TOOL CALL: {tool_result}\n")
        
        # Tool 2: Risk calculator
        if "danger" in query.lower() or "risk" in query.lower():
            tool_result = "Tool: Risk Calculator - Calculated danger scores for all rooms"
            tool_results.append(tool_result)
            reasoning_log.append(f"TOOL CALL: {tool_result}\n")
        
        # Tool 3: Sensor aggregator
        if "sensor" in query.lower() or "temperature" in query.lower() or "smoke" in query.lower():
            tool_result = "Tool: Sensor Aggregator - Aggregated sensor data from all rooms"
            tool_results.append(tool_result)
            reasoning_log.append(f"TOOL CALL: {tool_result}\n")
        
        prompt = self._build_cot_with_tools_prompt(query, context, tool_results)
        response = self._generate_with_decoding_strategy(prompt, max_length)
        
        reasoning_log.append(f"REASONING WITH TOOLS:\n{response}\n")
        full_reasoning = "\n".join(reasoning_log)
        
        # Extract final answer
        final_answer = response
        if "ANSWER:" in response or "answer:" in response.lower():
            parts = response.split("ANSWER:") if "ANSWER:" in response else response.split("answer:")
            if len(parts) > 1:
                final_answer = parts[-1].strip()
        
        return full_reasoning, final_answer
    
    def generate_response(self, query: str, context: List[str] = None, max_length: int = 500, 
                         return_reasoning: bool = False) -> str:
        """
        Generate response using Llama model with context and advanced reasoning
        
        Args:
            query: User query
            context: Optional context strings (if None, will retrieve from FAISS)
            max_length: Maximum response length
            return_reasoning: If True, returns tuple of (reasoning, answer), else just answer
        
        Returns:
            If return_reasoning is True: Tuple of (reasoning_steps, final_answer)
            Otherwise: Just the final answer string
        """
        if not self.pipe and not self.model:
            raise ValueError("Model not loaded. Call download_model() first.")
        
        # Retrieve context if not provided
        if context is None:
            search_results = self.search(query, k=3)
            context = [r["document"] for r in search_results]
        
        # Route to appropriate reasoning method based on mode
        if self.reasoning_mode == ReasoningMode.CHAIN_OF_THOUGHT:
            reasoning, answer = self._chain_of_thought_reasoning(query, context, max_length)
        elif self.reasoning_mode == ReasoningMode.TREE_OF_THOUGHTS:
            reasoning, answer = self._tree_of_thoughts_reasoning(query, context, max_length)
        elif self.reasoning_mode == ReasoningMode.REFLEXION:
            reasoning, answer = self._reflexion_reasoning(query, context, max_length)
        elif self.reasoning_mode == ReasoningMode.COT_WITH_TOOLS:
            reasoning, answer = self._cot_with_tools_reasoning(query, context, max_length)
        else:
            # Standard mode - use enhanced prompt with decoding strategy
            context_text = "\n".join([f"- {ctx}" for ctx in context])
            
            prompt = f"""You are an expert fire evacuation safety advisor. Use the following context about the building's fire safety status to answer the question.

CONTEXT:
{context_text}

QUESTION: {query}

Provide a clear, safety-focused answer based on the context. If the context doesn't contain enough information, say so.

ANSWER:"""
            
            answer = self._generate_with_decoding_strategy(prompt, max_length)
            reasoning = f"Standard reasoning mode - Direct answer generation.\n\n{answer}"
        
        if return_reasoning:
            return reasoning, answer
        return answer
    
    def set_reasoning_mode(self, mode: ReasoningMode):
        """Set the reasoning mode for future queries"""
        self.reasoning_mode = mode
        print(f"[OK] Reasoning mode set to: {mode.value}")
    
    def set_decoding_strategy(self, strategy: DecodingStrategy):
        """Set the decoding strategy for future queries"""
        self.decoding_strategy = strategy
        print(f"[OK] Decoding strategy set to: {strategy.value}")
    
    def query(self, question: str, k: int = 3, reasoning_mode: Optional[ReasoningMode] = None, 
              show_reasoning: bool = True) -> Dict[str, Any]:
        """
        Complete RAG query: retrieve context and generate response with advanced reasoning
        
        Args:
            question: User question
            k: Number of context documents to retrieve
            reasoning_mode: Optional override for reasoning mode (uses instance default if None)
            show_reasoning: If True, includes full reasoning steps in response
            
        Returns:
            Dictionary with answer, context, metadata, reasoning information, and reasoning steps
        """
        # Retrieve relevant context
        search_results = self.search(question, k=k)
        
        # Generate response with reasoning
        context = [r["document"] for r in search_results]
        
        # Temporarily override reasoning mode if provided
        original_mode = self.reasoning_mode
        if reasoning_mode is not None:
            self.reasoning_mode = reasoning_mode
        
        try:
            reasoning, answer = self.generate_response(question, context, return_reasoning=True)
        finally:
            # Restore original mode
            self.reasoning_mode = original_mode
        
        result = {
            "question": question,
            "answer": answer,
            "context": context,
            "reasoning_mode": self.reasoning_mode.value,
            "decoding_strategy": self.decoding_strategy.value,
            "sources": [
                {
                    "type": r["metadata"].get("type"),
                    "room_id": r["metadata"].get("room_id"),
                    "route_id": r["metadata"].get("route_id"),
                    "relevance_score": 1.0 / (1.0 + r["distance"])
                }
                for r in search_results
            ]
        }
        
        if show_reasoning:
            result["reasoning_steps"] = reasoning
        
        return result
    
    def save_index(self, index_path: str, metadata_path: str):
        """Save FAISS index and metadata"""
        if self.index:
            faiss.write_index(self.index, index_path)
            with open(metadata_path, 'wb') as f:
                pickle.dump({
                    "documents": self.documents,
                    "metadata": self.metadata
                }, f)
            print(f"[OK] Saved index to {index_path} and metadata to {metadata_path}")
    
    def load_index(self, index_path: str, metadata_path: str):
        """Load FAISS index and metadata"""
        self.index = faiss.read_index(index_path)
        with open(metadata_path, 'rb') as f:
            data = pickle.load(f)
            self.documents = data["documents"]
            self.metadata = data["metadata"]
        print(f"[OK] Loaded index with {self.index.ntotal} vectors")
    
    def compare_reasoning_modes(self, question: str, k: int = 3) -> Dict[str, Any]:
        """
        Compare all reasoning modes for a given question
        
        Args:
            question: User question
            k: Number of context documents to retrieve
            
        Returns:
            Dictionary with answers from all reasoning modes
        """
        # Retrieve context once
        search_results = self.search(question, k=k)
        context = [r["document"] for r in search_results]
        
        results = {
            "question": question,
            "context": context,
            "sources": [
                {
                    "type": r["metadata"].get("type"),
                    "room_id": r["metadata"].get("room_id"),
                    "route_id": r["metadata"].get("route_id"),
                    "relevance_score": 1.0 / (1.0 + r["distance"])
                }
                for r in search_results
            ],
            "answers": {}
        }
        
        # Save original mode
        original_mode = self.reasoning_mode
        
        # Test each reasoning mode
        for mode in ReasoningMode:
            try:
                self.reasoning_mode = mode
                reasoning, answer = self.generate_response(question, context, return_reasoning=True)
                results["answers"][mode.value] = {
                    "answer": answer,
                    "reasoning": reasoning,
                    "length": len(answer)
                }
            except Exception as e:
                results["answers"][mode.value] = {
                    "error": str(e)
                }
        
        # Restore original mode
        self.reasoning_mode = original_mode
        
        return results

# === Gradio integration ===
_rag_instance: Optional[FireEvacuationRAG] = None


def _init_rag() -> FireEvacuationRAG:
    """Initialize and cache the RAG system for Gradio use."""
    global _rag_instance
    if _rag_instance is not None:
        return _rag_instance

    # Configuration (match original defaults, but without noisy prints)
    USE_UNSLOTH = True
    USE_8BIT = False
    UNSLOTH_MODEL = "unsloth/Meta-Llama-3.1-8B-Instruct"
    
    # Set model directory to absolute path
    MODEL_DIR = r"D:\github\cse499\models"

    # Create fire evacuation system
    floor_plan = create_sample_floor_plan()
    sensor_system = create_sample_fire_scenario(floor_plan)
    pathfinder = PathFinder(floor_plan, sensor_system)

    # Export data and build index
    exporter = FireEvacuationDataExporter(floor_plan, sensor_system, pathfinder)
    json_data = exporter.export_to_json("fire_evacuation_data.json", start_location="R1")

    # Initialize RAG
    if USE_UNSLOTH:
        rag = FireEvacuationRAG(
            model_name=UNSLOTH_MODEL,
            model_dir=MODEL_DIR,
            use_unsloth=True,
            load_in_4bit=False,
            max_seq_length=2048,
            reasoning_mode=ReasoningMode.CHAIN_OF_THOUGHT,
            decoding_strategy=DecodingStrategy.NUCLEUS,
        )
    else:
        rag = FireEvacuationRAG(
            model_name="nvidia/Llama-3.1-Minitron-4B-Width-Base",
            model_dir=MODEL_DIR,
            use_8bit=USE_8BIT,
            reasoning_mode=ReasoningMode.CHAIN_OF_THOUGHT,
            decoding_strategy=DecodingStrategy.NUCLEUS,
        )

    rag.download_model()
    rag.load_embedder()
    rag.build_index_from_json(json_data)

    _rag_instance = rag
    return rag


def gradio_answer(question: str) -> str:
    """Gradio callback: take a text question, return LLM/RAG answer."""
    question = (question or "").strip()
    if not question:
        return "Please enter a question about fire evacuation or building safety."

    rag = _init_rag()
    result = rag.query(question, k=3, show_reasoning=False)
    return result.get("answer", "No answer generated.")


if __name__ == "__main__":
    iface = gr.Interface(
        fn=gradio_answer,
        inputs=gr.Textbox(lines=3, label="Fire Evacuation Question"),
        outputs=gr.Textbox(lines=6, label="LLM Recommendation"),
        title="Fire Evacuation RAG Advisor",
        description="Ask about evacuation routes, dangers, and exits in the simulated building.",
    )
    iface.launch()