Update app_low.py
Browse files- app_low.py +14 -10
app_low.py
CHANGED
|
@@ -1,18 +1,19 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
| 4 |
import os
|
| 5 |
|
| 6 |
# ============================================================
|
| 7 |
-
# 1️⃣ Download model efficiently
|
| 8 |
# ============================================================
|
| 9 |
MODEL_ID = "Qwen/Qwen2.5-1.5B"
|
| 10 |
|
| 11 |
-
#
|
| 12 |
model_dir = snapshot_download(repo_id=MODEL_ID, cache_dir="/tmp/qwen_model")
|
| 13 |
|
| 14 |
# ============================================================
|
| 15 |
-
# 2️⃣ Load model with CPU
|
| 16 |
# ============================================================
|
| 17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
|
|
@@ -22,10 +23,11 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 22 |
device_map="auto" if torch.cuda.is_available() else None,
|
| 23 |
low_cpu_mem_usage=True,
|
| 24 |
)
|
|
|
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
| 26 |
|
| 27 |
# ============================================================
|
| 28 |
-
# 3️⃣ Define
|
| 29 |
# ============================================================
|
| 30 |
def chat_with_qwen(message, history):
|
| 31 |
history = history or []
|
|
@@ -35,17 +37,20 @@ def chat_with_qwen(message, history):
|
|
| 35 |
messages.append({"role": "assistant", "content": bot})
|
| 36 |
messages.append({"role": "user", "content": message})
|
| 37 |
|
|
|
|
| 38 |
inputs = tokenizer.apply_chat_template(
|
| 39 |
messages,
|
| 40 |
add_generation_prompt=True,
|
| 41 |
tokenize=True,
|
| 42 |
return_tensors="pt"
|
| 43 |
-
)
|
|
|
|
|
|
|
| 44 |
|
| 45 |
with torch.no_grad():
|
| 46 |
outputs = model.generate(
|
| 47 |
**inputs,
|
| 48 |
-
max_new_tokens=
|
| 49 |
temperature=0.8,
|
| 50 |
do_sample=True,
|
| 51 |
pad_token_id=tokenizer.eos_token_id
|
|
@@ -55,14 +60,13 @@ def chat_with_qwen(message, history):
|
|
| 55 |
history.append((message, response))
|
| 56 |
return history, history
|
| 57 |
|
| 58 |
-
|
| 59 |
# ============================================================
|
| 60 |
# 4️⃣ Gradio UI
|
| 61 |
# ============================================================
|
| 62 |
with gr.Blocks(theme="soft", title="Qwen 2.5 Chatbot") as demo:
|
| 63 |
-
gr.Markdown("##
|
| 64 |
chatbot = gr.Chatbot(height=480, label="Chat with Qwen 2.5", type="messages")
|
| 65 |
-
msg = gr.Textbox(placeholder="
|
| 66 |
clear = gr.Button("🧹 Clear Chat")
|
| 67 |
|
| 68 |
msg.submit(chat_with_qwen, [msg, chatbot], [chatbot, chatbot])
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
from huggingface_hub import snapshot_download
|
| 5 |
import os
|
| 6 |
|
| 7 |
# ============================================================
|
| 8 |
+
# 1️⃣ Download model efficiently (avoid exceeding space limits)
|
| 9 |
# ============================================================
|
| 10 |
MODEL_ID = "Qwen/Qwen2.5-1.5B"
|
| 11 |
|
| 12 |
+
# Store in /tmp to reduce Space storage pressure
|
| 13 |
model_dir = snapshot_download(repo_id=MODEL_ID, cache_dir="/tmp/qwen_model")
|
| 14 |
|
| 15 |
# ============================================================
|
| 16 |
+
# 2️⃣ Load model with CPU or GPU offload
|
| 17 |
# ============================================================
|
| 18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
|
|
|
|
| 23 |
device_map="auto" if torch.cuda.is_available() else None,
|
| 24 |
low_cpu_mem_usage=True,
|
| 25 |
)
|
| 26 |
+
|
| 27 |
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
| 28 |
|
| 29 |
# ============================================================
|
| 30 |
+
# 3️⃣ Define chat function
|
| 31 |
# ============================================================
|
| 32 |
def chat_with_qwen(message, history):
|
| 33 |
history = history or []
|
|
|
|
| 37 |
messages.append({"role": "assistant", "content": bot})
|
| 38 |
messages.append({"role": "user", "content": message})
|
| 39 |
|
| 40 |
+
# Tokenize input messages
|
| 41 |
inputs = tokenizer.apply_chat_template(
|
| 42 |
messages,
|
| 43 |
add_generation_prompt=True,
|
| 44 |
tokenize=True,
|
| 45 |
return_tensors="pt"
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 49 |
|
| 50 |
with torch.no_grad():
|
| 51 |
outputs = model.generate(
|
| 52 |
**inputs,
|
| 53 |
+
max_new_tokens=256,
|
| 54 |
temperature=0.8,
|
| 55 |
do_sample=True,
|
| 56 |
pad_token_id=tokenizer.eos_token_id
|
|
|
|
| 60 |
history.append((message, response))
|
| 61 |
return history, history
|
| 62 |
|
|
|
|
| 63 |
# ============================================================
|
| 64 |
# 4️⃣ Gradio UI
|
| 65 |
# ============================================================
|
| 66 |
with gr.Blocks(theme="soft", title="Qwen 2.5 Chatbot") as demo:
|
| 67 |
+
gr.Markdown("## 🤖 Qwen 2.5 Chatbot — Optimized for CPU/GPU Offload")
|
| 68 |
chatbot = gr.Chatbot(height=480, label="Chat with Qwen 2.5", type="messages")
|
| 69 |
+
msg = gr.Textbox(placeholder="Type your question here...", label="Your Message")
|
| 70 |
clear = gr.Button("🧹 Clear Chat")
|
| 71 |
|
| 72 |
msg.submit(chat_with_qwen, [msg, chatbot], [chatbot, chatbot])
|