import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer import gradio as gr # Load from your HF model repo model_name = "your-username/gpt2-phostune-demo" # ✅ Replace tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) model.eval().to("cuda" if torch.cuda.is_available() else "cpu") def generate(prompt): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=100, do_sample=True, temperature=0.7, top_k=50, top_p=0.95 ) return tokenizer.decode(outputs[0], skip_special_tokens=True) gr.Interface( fn=generate, inputs="text", outputs="text", title="🧠 PhosTune GPT-2 Demo", description="Fine-tuned GPT-2 model deployed using Hugging Face Spaces.", theme="compact" ).launch()