Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| import numpy as np | |
| from diffusers import StableDiffusionDepth2ImgPipeline | |
| from pathlib import Path | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| dept2img = StableDiffusionDepth2ImgPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-2-depth", | |
| torch_dtype=torch.float16, | |
| ).to(device) | |
| def pad_image(input_image): | |
| pad_w, pad_h = ( | |
| np.max(((2, 2), np.ceil(np.array(input_image.size) / 64).astype(int)), axis=0) | |
| * 64 | |
| - input_image.size | |
| ) | |
| im_padded = Image.fromarray( | |
| np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode="edge") | |
| ) | |
| w, h = im_padded.size | |
| if w == h: | |
| return im_padded | |
| elif w > h: | |
| new_image = Image.new(im_padded.mode, (w, w), (0, 0, 0)) | |
| new_image.paste(im_padded, (0, (w - h) // 2)) | |
| return new_image | |
| else: | |
| new_image = Image.new(im_padded.mode, (h, h), (0, 0, 0)) | |
| new_image.paste(im_padded, ((h - w) // 2, 0)) | |
| return new_image | |
| def predict( | |
| input_image, | |
| prompt, | |
| negative_prompt, | |
| steps, | |
| num_samples, | |
| scale, | |
| seed, | |
| strength, | |
| depth_image=None, | |
| ): | |
| depth = None | |
| if depth_image is not None: | |
| depth_image = pad_image(depth_image) | |
| depth_image = depth_image.resize((512, 512)) | |
| depth = np.array(depth_image.convert("L")) | |
| depth = np.expand_dims(depth, 0) | |
| depth = depth.astype(np.float32) / 255.0 | |
| depth = torch.from_numpy(depth) | |
| init_image = input_image.convert("RGB") | |
| image = pad_image(init_image) # resize to integer multiple of 32 | |
| image = image.resize((512, 512)) | |
| generator = None | |
| if seed is not None: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| result = dept2img( | |
| image=image, | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| generator=generator, | |
| depth_map=depth, | |
| strength=strength, | |
| num_inference_steps=steps, | |
| guidance_scale=scale, | |
| num_images_per_prompt=num_samples, | |
| ) | |
| return result["images"] | |
| css = """ | |
| #gallery .fixed-height { | |
| max-height: unset; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as block: | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown("## Stable Diffusion 2 Depth2Img") | |
| gr.HTML( | |
| "<p><a href='https://huggingface.co/spaces/radames/stable-diffusion-depth2img?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(type="pil") | |
| with gr.Accordion("Depth Image Optional", open=False): | |
| depth_image = gr.Image(type="pil") | |
| prompt = gr.Textbox(label="Prompt") | |
| negative_prompt = gr.Textbox(label="Negative Prompt") | |
| run_button = gr.Button("Run") | |
| with gr.Accordion("Advanced Options", open=False): | |
| num_samples = gr.Slider( | |
| label="Images", minimum=1, maximum=4, value=1, step=1 | |
| ) | |
| steps = gr.Slider( | |
| label="Steps", minimum=1, maximum=50, value=50, step=1 | |
| ) | |
| scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=0.1, | |
| maximum=30.0, | |
| value=9.0, | |
| step=0.1, | |
| ) | |
| strength = gr.Slider( | |
| label="Strength", minimum=0.0, maximum=1.0, value=0.9, step=0.01 | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=2147483647, | |
| step=1, | |
| randomize=True, | |
| ) | |
| with gr.Column(scale=2): | |
| with gr.Row(): | |
| gallery = gr.Gallery( | |
| label="Generated Images", | |
| show_label=False, | |
| elem_id="gallery", | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| [ | |
| "./examples/baby.jpg", | |
| "high definition photo of a baby astronaut space walking at the international space station with earth seeing from above in the background", | |
| "", | |
| 50, | |
| 4, | |
| 9.0, | |
| 123123123, | |
| 0.8, | |
| None, | |
| ], | |
| [ | |
| "./examples/gol.jpg", | |
| "professional photo of a Elmo jumping between two high rises, beautiful colorful city landscape in the background", | |
| "", | |
| 50, | |
| 4, | |
| 9.0, | |
| 1734133747, | |
| 0.9, | |
| None, | |
| ], | |
| [ | |
| "./examples/bag.jpg", | |
| "a photo of a bag of cookies in the bathroom", | |
| "low light, dark, blurry", | |
| 50, | |
| 4, | |
| 9.0, | |
| 1734133747, | |
| 0.9, | |
| "./examples/depth.jpg", | |
| ], | |
| [ | |
| "./examples/smile_face.jpg", | |
| "a hand holding a very spherical orange", | |
| "low light, dark, blurry", | |
| 50, | |
| 4, | |
| 6.0, | |
| 961736534, | |
| 0.5, | |
| "./examples/smile_depth.jpg", | |
| ], | |
| ], | |
| inputs=[ | |
| input_image, | |
| prompt, | |
| negative_prompt, | |
| steps, | |
| num_samples, | |
| scale, | |
| seed, | |
| strength, | |
| depth_image, | |
| ], | |
| outputs=[gallery], | |
| fn=predict, | |
| cache_examples=True, | |
| ) | |
| run_button.click( | |
| fn=predict, | |
| inputs=[ | |
| input_image, | |
| prompt, | |
| negative_prompt, | |
| steps, | |
| num_samples, | |
| scale, | |
| seed, | |
| strength, | |
| depth_image, | |
| ], | |
| outputs=[gallery], | |
| ) | |
| block.queue(api_open=False) | |
| block.launch(show_api=False) | |