Update src/streamlit_app.py
Browse files- src/streamlit_app.py +438 -105
src/streamlit_app.py
CHANGED
|
@@ -1,24 +1,27 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
LLM Compatibility Advisor - Streamlined
|
| 4 |
Author: Assistant
|
| 5 |
-
Description: Provides device-based LLM recommendations with popular models
|
| 6 |
Requirements: streamlit, pandas, plotly, openpyxl
|
| 7 |
"""
|
| 8 |
|
| 9 |
import streamlit as st
|
| 10 |
import pandas as pd
|
| 11 |
import re
|
|
|
|
| 12 |
import plotly.graph_objects as go
|
| 13 |
-
from typing import Optional, Tuple,
|
| 14 |
|
| 15 |
-
#
|
| 16 |
st.set_page_config(
|
| 17 |
page_title="LLM Compatibility Advisor",
|
| 18 |
layout="wide",
|
| 19 |
-
page_icon="๐ง "
|
|
|
|
| 20 |
)
|
| 21 |
|
|
|
|
| 22 |
@st.cache_data
|
| 23 |
def load_data():
|
| 24 |
paths = [
|
|
@@ -37,109 +40,206 @@ def load_data():
|
|
| 37 |
except Exception as e:
|
| 38 |
return None, f"Error loading '{path}': {str(e)}"
|
| 39 |
|
| 40 |
-
|
| 41 |
-
return None, "No data found in either file."
|
| 42 |
-
|
| 43 |
-
return combined_df, None
|
| 44 |
-
|
| 45 |
def extract_numeric_ram(ram) -> Optional[int]:
|
| 46 |
if pd.isna(ram):
|
| 47 |
return None
|
| 48 |
-
|
| 49 |
ram_str = str(ram).lower().replace(" ", "")
|
| 50 |
-
|
|
|
|
| 51 |
gb_match = re.search(r"(\d+(?:\.\d+)?)(?:gb|g)", ram_str)
|
| 52 |
if gb_match:
|
| 53 |
return int(float(gb_match.group(1)))
|
| 54 |
-
|
|
|
|
| 55 |
mb_match = re.search(r"(\d+)(?:mb|m)", ram_str)
|
| 56 |
if mb_match:
|
| 57 |
-
return max(1, int(int(mb_match.group(1)) / 1024))
|
| 58 |
-
|
|
|
|
| 59 |
plain_match = re.search(r"(\d+)", ram_str)
|
| 60 |
if plain_match:
|
| 61 |
return int(plain_match.group(1))
|
| 62 |
-
|
| 63 |
return None
|
| 64 |
|
|
|
|
| 65 |
LLM_DATABASE = {
|
| 66 |
-
"ultra_low": {
|
| 67 |
"general": [
|
| 68 |
{"name": "TinyLlama-1.1B-Chat", "size": "637MB", "description": "Compact chat model"},
|
|
|
|
| 69 |
{"name": "all-MiniLM-L6-v2", "size": "91MB", "description": "Sentence embeddings"}
|
| 70 |
],
|
| 71 |
"code": [
|
| 72 |
-
{"name": "CodeT5-small", "size": "242MB", "description": "Code generation"}
|
|
|
|
| 73 |
]
|
| 74 |
},
|
| 75 |
-
"low": {
|
| 76 |
"general": [
|
| 77 |
{"name": "Phi-1.5", "size": "2.8GB", "description": "Microsoft's efficient model"},
|
| 78 |
-
{"name": "Gemma-2B", "size": "1.4GB", "description": "Google's compact model"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
],
|
| 80 |
"code": [
|
| 81 |
-
{"name": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
]
|
| 83 |
},
|
| 84 |
-
"moderate": {
|
| 85 |
"general": [
|
| 86 |
{"name": "Llama-2-7B-Chat", "size": "3.5GB", "description": "Meta's popular chat model"},
|
| 87 |
-
{"name": "Mistral-7B-Instruct-v0.2", "size": "4.1GB", "description": "Latest Mistral instruct"}
|
|
|
|
| 88 |
],
|
| 89 |
"code": [
|
| 90 |
-
{"name": "CodeLlama-7B-Instruct", "size": "3.8GB", "description": "Instruction-tuned CodeLlama"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
]
|
| 92 |
},
|
| 93 |
-
"good": {
|
| 94 |
"general": [
|
| 95 |
{"name": "Llama-2-13B-Chat", "size": "7.3GB", "description": "Larger Llama variant"},
|
|
|
|
| 96 |
{"name": "OpenChat-3.5", "size": "7.1GB", "description": "High-quality chat model"}
|
| 97 |
],
|
| 98 |
"code": [
|
| 99 |
-
{"name": "CodeLlama-13B-Instruct", "size": "7.3GB", "description": "Larger code model"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
]
|
| 101 |
},
|
| 102 |
-
"high": {
|
| 103 |
"general": [
|
| 104 |
{"name": "Mixtral-8x7B-Instruct-v0.1", "size": "26.9GB", "description": "Mixture of experts"},
|
|
|
|
| 105 |
{"name": "Yi-34B-Chat", "size": "19.5GB", "description": "01.AI's large model"}
|
| 106 |
],
|
| 107 |
"code": [
|
| 108 |
-
{"name": "CodeLlama-34B-Instruct", "size": "19.0GB", "description": "Large code specialist"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
]
|
| 110 |
},
|
| 111 |
-
"ultra_high": {
|
| 112 |
"general": [
|
| 113 |
{"name": "Llama-2-70B", "size": "130GB", "description": "Full precision"},
|
| 114 |
-
{"name": "Mixtral-8x22B", "size": "176GB", "description": "Latest mixture model"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
]
|
| 116 |
}
|
| 117 |
}
|
| 118 |
|
| 119 |
-
|
|
|
|
|
|
|
| 120 |
ram = extract_numeric_ram(ram_str)
|
|
|
|
| 121 |
if ram is None:
|
| 122 |
-
return "โช Check exact specs
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
if ram <= 2:
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
elif ram <= 4:
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
elif ram <= 8:
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
elif ram <= 16:
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
elif ram <= 32:
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
else:
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
|
|
|
| 136 |
def get_os_info(os_name) -> Tuple[str, str]:
|
|
|
|
| 137 |
if pd.isna(os_name):
|
| 138 |
-
return "
|
|
|
|
| 139 |
os = str(os_name).lower()
|
| 140 |
if "windows" in os:
|
| 141 |
return "๐ช", os_name
|
| 142 |
-
elif "mac" in os:
|
| 143 |
return "๐", os_name
|
| 144 |
elif "linux" in os or "ubuntu" in os:
|
| 145 |
return "๐ง", os_name
|
|
@@ -148,140 +248,373 @@ def get_os_info(os_name) -> Tuple[str, str]:
|
|
| 148 |
elif "ios" in os:
|
| 149 |
return "๐ฑ", os_name
|
| 150 |
else:
|
| 151 |
-
return "
|
| 152 |
|
|
|
|
| 153 |
def create_performance_chart(df):
|
|
|
|
| 154 |
laptop_rams = df["Laptop RAM"].apply(extract_numeric_ram).dropna()
|
| 155 |
mobile_rams = df["Mobile RAM"].apply(extract_numeric_ram).dropna()
|
|
|
|
| 156 |
fig = go.Figure()
|
| 157 |
-
|
| 158 |
-
fig.add_trace(go.Histogram(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
fig.update_layout(
|
| 160 |
-
title="RAM Distribution",
|
| 161 |
xaxis_title="RAM (GB)",
|
| 162 |
-
yaxis_title="Students",
|
| 163 |
barmode='overlay',
|
| 164 |
height=400
|
| 165 |
)
|
|
|
|
| 166 |
return fig
|
| 167 |
|
| 168 |
-
|
|
|
|
|
|
|
| 169 |
if not models_dict:
|
| 170 |
return
|
|
|
|
|
|
|
|
|
|
| 171 |
for category, model_list in models_dict.items():
|
| 172 |
if model_list:
|
| 173 |
-
st.
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
st.title("๐ง LLM Compatibility Advisor")
|
| 178 |
-
st.markdown("Get personalized AI
|
| 179 |
|
|
|
|
| 180 |
df, error = load_data()
|
|
|
|
| 181 |
if error:
|
| 182 |
st.error(error)
|
|
|
|
| 183 |
st.stop()
|
|
|
|
| 184 |
if df is None or df.empty:
|
| 185 |
-
st.error("No data found.")
|
| 186 |
st.stop()
|
| 187 |
|
|
|
|
| 188 |
with st.sidebar:
|
| 189 |
-
st.header("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
st.metric("Total Students", len(df))
|
|
|
|
|
|
|
|
|
|
| 191 |
avg_laptop_ram = df["Laptop RAM"].apply(extract_numeric_ram).mean()
|
| 192 |
avg_mobile_ram = df["Mobile RAM"].apply(extract_numeric_ram).mean()
|
|
|
|
| 193 |
if not pd.isna(avg_laptop_ram):
|
| 194 |
st.metric("Avg Laptop RAM", f"{avg_laptop_ram:.1f} GB")
|
| 195 |
if not pd.isna(avg_mobile_ram):
|
| 196 |
st.metric("Avg Mobile RAM", f"{avg_mobile_ram:.1f} GB")
|
| 197 |
|
|
|
|
| 198 |
st.subheader("๐ค Individual Student Analysis")
|
| 199 |
-
|
| 200 |
-
student_options = ["Select a student..."] + student_names
|
| 201 |
-
|
| 202 |
-
selected_name = st.selectbox(
|
| 203 |
"Choose a student:",
|
| 204 |
-
options=
|
|
|
|
| 205 |
)
|
| 206 |
|
| 207 |
-
if
|
| 208 |
-
selected_user = selected_name
|
| 209 |
user_data = df[df["Full Name"] == selected_user].iloc[0]
|
| 210 |
-
|
|
|
|
| 211 |
col1, col2 = st.columns(2)
|
| 212 |
-
|
| 213 |
with col1:
|
| 214 |
-
st.markdown("### ๐ป Laptop")
|
| 215 |
laptop_os_icon, laptop_os_name = get_os_info(user_data.get('Laptop Operating System'))
|
| 216 |
laptop_ram = user_data.get('Laptop RAM', 'Not specified')
|
| 217 |
-
laptop_rec,
|
|
|
|
|
|
|
| 218 |
st.markdown(f"**OS:** {laptop_os_icon} {laptop_os_name}")
|
| 219 |
st.markdown(f"**RAM:** {laptop_ram}")
|
| 220 |
-
st.
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
with col2:
|
| 224 |
-
st.markdown("### ๐ฑ Mobile")
|
| 225 |
mobile_os_icon, mobile_os_name = get_os_info(user_data.get('Mobile Operating System'))
|
| 226 |
mobile_ram = user_data.get('Mobile RAM', 'Not specified')
|
| 227 |
-
mobile_rec,
|
|
|
|
|
|
|
| 228 |
st.markdown(f"**OS:** {mobile_os_icon} {mobile_os_name}")
|
| 229 |
st.markdown(f"**RAM:** {mobile_ram}")
|
| 230 |
-
st.
|
| 231 |
-
|
| 232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
st.markdown("---")
|
| 234 |
-
st.header("๐ Batch Analysis")
|
|
|
|
|
|
|
| 235 |
df_display = df[["Full Name", "Laptop RAM", "Mobile RAM"]].copy()
|
| 236 |
-
df_display["Laptop Recommendation"] = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[0])
|
| 237 |
-
df_display["Mobile Recommendation"] = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[0])
|
| 238 |
-
st.dataframe(df_display, use_container_width=True)
|
| 239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
if len(df) > 1:
|
| 241 |
-
st.subheader("๐ RAM Distribution")
|
| 242 |
fig = create_performance_chart(df)
|
| 243 |
st.plotly_chart(fig, use_container_width=True)
|
| 244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
st.markdown("---")
|
| 246 |
-
st.header("๐ Model Explorer")
|
| 247 |
-
selected_ram_range = st.selectbox(
|
| 248 |
-
"Select RAM range:",
|
| 249 |
-
["\u22642GB (Ultra Low)", "3-4GB (Low)", "5-8GB (Moderate)",
|
| 250 |
-
"9-16GB (Good)", "17-32GB (High)", ">32GB (Ultra High)"]
|
| 251 |
-
)
|
| 252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
ram_mapping = {
|
| 254 |
"โค2GB (Ultra Low)": "ultra_low",
|
| 255 |
"3-4GB (Low)": "low",
|
| 256 |
-
"5-
|
|
|
|
| 257 |
"9-16GB (Good)": "good",
|
| 258 |
"17-32GB (High)": "high",
|
| 259 |
">32GB (Ultra High)": "ultra_high"
|
| 260 |
}
|
| 261 |
|
| 262 |
-
|
| 263 |
-
if
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
st.markdown("""
|
| 269 |
-
## Popular Models by Category
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
|
|
|
| 279 |
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
""")
|
| 285 |
|
| 286 |
-
|
| 287 |
-
|
|
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
LLM Compatibility Advisor - Streamlined with Download Sizes
|
| 4 |
Author: Assistant
|
| 5 |
+
Description: Provides device-based LLM recommendations with popular models and download sizes
|
| 6 |
Requirements: streamlit, pandas, plotly, openpyxl
|
| 7 |
"""
|
| 8 |
|
| 9 |
import streamlit as st
|
| 10 |
import pandas as pd
|
| 11 |
import re
|
| 12 |
+
import plotly.express as px
|
| 13 |
import plotly.graph_objects as go
|
| 14 |
+
from typing import Optional, Tuple, List, Dict
|
| 15 |
|
| 16 |
+
# โ
MUST be the first Streamlit command
|
| 17 |
st.set_page_config(
|
| 18 |
page_title="LLM Compatibility Advisor",
|
| 19 |
layout="wide",
|
| 20 |
+
page_icon="๐ง ",
|
| 21 |
+
initial_sidebar_state="expanded"
|
| 22 |
)
|
| 23 |
|
| 24 |
+
# Enhanced data loading with error handling
|
| 25 |
@st.cache_data
|
| 26 |
def load_data():
|
| 27 |
paths = [
|
|
|
|
| 40 |
except Exception as e:
|
| 41 |
return None, f"Error loading '{path}': {str(e)}"
|
| 42 |
|
| 43 |
+
# Enhanced RAM extraction with better parsing
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
def extract_numeric_ram(ram) -> Optional[int]:
|
| 45 |
if pd.isna(ram):
|
| 46 |
return None
|
| 47 |
+
|
| 48 |
ram_str = str(ram).lower().replace(" ", "")
|
| 49 |
+
|
| 50 |
+
# Handle various formats: "8GB", "8 GB", "8gb", "8192MB", etc.
|
| 51 |
gb_match = re.search(r"(\d+(?:\.\d+)?)(?:gb|g)", ram_str)
|
| 52 |
if gb_match:
|
| 53 |
return int(float(gb_match.group(1)))
|
| 54 |
+
|
| 55 |
+
# Handle MB format
|
| 56 |
mb_match = re.search(r"(\d+)(?:mb|m)", ram_str)
|
| 57 |
if mb_match:
|
| 58 |
+
return max(1, int(int(mb_match.group(1)) / 1024)) # Convert MB to GB
|
| 59 |
+
|
| 60 |
+
# Handle plain numbers (assume GB)
|
| 61 |
plain_match = re.search(r"(\d+)", ram_str)
|
| 62 |
if plain_match:
|
| 63 |
return int(plain_match.group(1))
|
| 64 |
+
|
| 65 |
return None
|
| 66 |
|
| 67 |
+
# Streamlined LLM database with popular models and download sizes
|
| 68 |
LLM_DATABASE = {
|
| 69 |
+
"ultra_low": { # โค2GB
|
| 70 |
"general": [
|
| 71 |
{"name": "TinyLlama-1.1B-Chat", "size": "637MB", "description": "Compact chat model"},
|
| 72 |
+
{"name": "DistilBERT-base", "size": "268MB", "description": "Efficient BERT variant"},
|
| 73 |
{"name": "all-MiniLM-L6-v2", "size": "91MB", "description": "Sentence embeddings"}
|
| 74 |
],
|
| 75 |
"code": [
|
| 76 |
+
{"name": "CodeT5-small", "size": "242MB", "description": "Code generation"},
|
| 77 |
+
{"name": "Replit-code-v1-3B", "size": "1.2GB", "description": "Code completion"}
|
| 78 |
]
|
| 79 |
},
|
| 80 |
+
"low": { # 3-4GB
|
| 81 |
"general": [
|
| 82 |
{"name": "Phi-1.5", "size": "2.8GB", "description": "Microsoft's efficient model"},
|
| 83 |
+
{"name": "Gemma-2B", "size": "1.4GB", "description": "Google's compact model"},
|
| 84 |
+
{"name": "OpenLLaMA-3B", "size": "2.1GB", "description": "Open source LLaMA"}
|
| 85 |
+
],
|
| 86 |
+
"code": [
|
| 87 |
+
{"name": "CodeGen-2B", "size": "1.8GB", "description": "Salesforce code model"},
|
| 88 |
+
{"name": "StarCoder-1B", "size": "1.1GB", "description": "BigCode project"}
|
| 89 |
+
],
|
| 90 |
+
"chat": [
|
| 91 |
+
{"name": "Alpaca-3B", "size": "2.0GB", "description": "Stanford's instruction model"},
|
| 92 |
+
{"name": "Vicuna-3B", "size": "2.1GB", "description": "ChatGPT-style training"}
|
| 93 |
+
]
|
| 94 |
+
},
|
| 95 |
+
"moderate_low": { # 5-6GB
|
| 96 |
+
"general": [
|
| 97 |
+
{"name": "Phi-2", "size": "5.2GB", "description": "Microsoft's 2.7B model"},
|
| 98 |
+
{"name": "Gemma-7B-it", "size": "4.2GB", "description": "Google instruction tuned"},
|
| 99 |
+
{"name": "Mistral-7B-v0.1", "size": "4.1GB", "description": "Mistral AI base model"}
|
| 100 |
],
|
| 101 |
"code": [
|
| 102 |
+
{"name": "CodeLlama-7B", "size": "3.8GB", "description": "Meta's code specialist"},
|
| 103 |
+
{"name": "StarCoder-7B", "size": "4.0GB", "description": "Code generation expert"}
|
| 104 |
+
],
|
| 105 |
+
"chat": [
|
| 106 |
+
{"name": "Zephyr-7B-beta", "size": "4.2GB", "description": "HuggingFace chat model"},
|
| 107 |
+
{"name": "Neural-Chat-7B", "size": "4.1GB", "description": "Intel optimized"}
|
| 108 |
]
|
| 109 |
},
|
| 110 |
+
"moderate": { # 7-8GB
|
| 111 |
"general": [
|
| 112 |
{"name": "Llama-2-7B-Chat", "size": "3.5GB", "description": "Meta's popular chat model"},
|
| 113 |
+
{"name": "Mistral-7B-Instruct-v0.2", "size": "4.1GB", "description": "Latest Mistral instruct"},
|
| 114 |
+
{"name": "Qwen-7B-Chat", "size": "4.0GB", "description": "Alibaba's multilingual"}
|
| 115 |
],
|
| 116 |
"code": [
|
| 117 |
+
{"name": "CodeLlama-7B-Instruct", "size": "3.8GB", "description": "Instruction-tuned CodeLlama"},
|
| 118 |
+
{"name": "WizardCoder-7B", "size": "4.0GB", "description": "Enhanced coding abilities"},
|
| 119 |
+
{"name": "Phind-CodeLlama-34B-v2", "size": "4.2GB", "description": "4-bit quantized version"}
|
| 120 |
+
],
|
| 121 |
+
"reasoning": [
|
| 122 |
+
{"name": "WizardMath-7B", "size": "4.0GB", "description": "Mathematical reasoning"},
|
| 123 |
+
{"name": "MetaMath-7B", "size": "3.9GB", "description": "Math problem solving"}
|
| 124 |
]
|
| 125 |
},
|
| 126 |
+
"good": { # 9-16GB
|
| 127 |
"general": [
|
| 128 |
{"name": "Llama-2-13B-Chat", "size": "7.3GB", "description": "Larger Llama variant"},
|
| 129 |
+
{"name": "Vicuna-13B-v1.5", "size": "7.2GB", "description": "Enhanced Vicuna"},
|
| 130 |
{"name": "OpenChat-3.5", "size": "7.1GB", "description": "High-quality chat model"}
|
| 131 |
],
|
| 132 |
"code": [
|
| 133 |
+
{"name": "CodeLlama-13B-Instruct", "size": "7.3GB", "description": "Larger code model"},
|
| 134 |
+
{"name": "WizardCoder-15B", "size": "8.2GB", "description": "Advanced coding"},
|
| 135 |
+
{"name": "StarCoder-15B", "size": "8.5GB", "description": "Large code model"}
|
| 136 |
+
],
|
| 137 |
+
"multimodal": [
|
| 138 |
+
{"name": "LLaVA-7B", "size": "7.0GB", "description": "Vision + language"},
|
| 139 |
+
{"name": "MiniGPT-4-7B", "size": "6.8GB", "description": "Multimodal chat"}
|
| 140 |
+
],
|
| 141 |
+
"reasoning": [
|
| 142 |
+
{"name": "WizardMath-13B", "size": "7.3GB", "description": "Advanced math"},
|
| 143 |
+
{"name": "Orca-2-13B", "size": "7.4GB", "description": "Microsoft reasoning"}
|
| 144 |
]
|
| 145 |
},
|
| 146 |
+
"high": { # 17-32GB
|
| 147 |
"general": [
|
| 148 |
{"name": "Mixtral-8x7B-Instruct-v0.1", "size": "26.9GB", "description": "Mixture of experts"},
|
| 149 |
+
{"name": "Llama-2-70B-Chat", "size": "38.0GB", "description": "8-bit quantized"},
|
| 150 |
{"name": "Yi-34B-Chat", "size": "19.5GB", "description": "01.AI's large model"}
|
| 151 |
],
|
| 152 |
"code": [
|
| 153 |
+
{"name": "CodeLlama-34B-Instruct", "size": "19.0GB", "description": "Large code specialist"},
|
| 154 |
+
{"name": "DeepSeek-Coder-33B", "size": "18.5GB", "description": "DeepSeek's coder"},
|
| 155 |
+
{"name": "WizardCoder-34B", "size": "19.2GB", "description": "Enterprise coding"}
|
| 156 |
+
],
|
| 157 |
+
"reasoning": [
|
| 158 |
+
{"name": "WizardMath-70B", "size": "38.5GB", "description": "8-bit quantized math"},
|
| 159 |
+
{"name": "MetaMath-70B", "size": "38.0GB", "description": "8-bit math reasoning"}
|
| 160 |
]
|
| 161 |
},
|
| 162 |
+
"ultra_high": { # >32GB
|
| 163 |
"general": [
|
| 164 |
{"name": "Llama-2-70B", "size": "130GB", "description": "Full precision"},
|
| 165 |
+
{"name": "Mixtral-8x22B", "size": "176GB", "description": "Latest mixture model"},
|
| 166 |
+
{"name": "Qwen-72B", "size": "145GB", "description": "Alibaba's flagship"}
|
| 167 |
+
],
|
| 168 |
+
"code": [
|
| 169 |
+
{"name": "CodeLlama-34B", "size": "68GB", "description": "Full precision code"},
|
| 170 |
+
{"name": "DeepSeek-Coder-33B", "size": "66GB", "description": "Full precision coding"}
|
| 171 |
+
],
|
| 172 |
+
"reasoning": [
|
| 173 |
+
{"name": "WizardMath-70B", "size": "130GB", "description": "Full precision math"},
|
| 174 |
+
{"name": "Goat-70B", "size": "132GB", "description": "Arithmetic reasoning"}
|
| 175 |
]
|
| 176 |
}
|
| 177 |
}
|
| 178 |
|
| 179 |
+
# Enhanced LLM recommendation with performance tiers
|
| 180 |
+
def recommend_llm(ram_str) -> Tuple[str, str, str, Dict[str, List[Dict]]]:
|
| 181 |
+
"""Returns (recommendation, performance_tier, additional_info, detailed_models)"""
|
| 182 |
ram = extract_numeric_ram(ram_str)
|
| 183 |
+
|
| 184 |
if ram is None:
|
| 185 |
+
return ("โช Check exact specs or test with quantized models.",
|
| 186 |
+
"Unknown",
|
| 187 |
+
"Verify RAM specifications",
|
| 188 |
+
{})
|
| 189 |
+
|
| 190 |
if ram <= 2:
|
| 191 |
+
models = LLM_DATABASE["ultra_low"]
|
| 192 |
+
return ("๐ธ Ultra-lightweight models - basic NLP tasks",
|
| 193 |
+
"Ultra Low",
|
| 194 |
+
"Mobile-optimized, simple tasks, limited context",
|
| 195 |
+
models)
|
| 196 |
elif ram <= 4:
|
| 197 |
+
models = LLM_DATABASE["low"]
|
| 198 |
+
return ("๐ธ Small language models - decent capabilities",
|
| 199 |
+
"Low",
|
| 200 |
+
"Basic chat, simple reasoning, text classification",
|
| 201 |
+
models)
|
| 202 |
+
elif ram <= 6:
|
| 203 |
+
models = LLM_DATABASE["moderate_low"]
|
| 204 |
+
return ("๐ Mid-range models - good general performance",
|
| 205 |
+
"Moderate-Low",
|
| 206 |
+
"Solid reasoning, coding help, longer conversations",
|
| 207 |
+
models)
|
| 208 |
elif ram <= 8:
|
| 209 |
+
models = LLM_DATABASE["moderate"]
|
| 210 |
+
return ("๐ Strong 7B models - excellent capabilities",
|
| 211 |
+
"Moderate",
|
| 212 |
+
"Professional use, coding assistance, complex reasoning",
|
| 213 |
+
models)
|
| 214 |
elif ram <= 16:
|
| 215 |
+
models = LLM_DATABASE["good"]
|
| 216 |
+
return ("๐ข High-quality models - premium performance",
|
| 217 |
+
"Good",
|
| 218 |
+
"Advanced tasks, multimodal support, research use",
|
| 219 |
+
models)
|
| 220 |
elif ram <= 32:
|
| 221 |
+
models = LLM_DATABASE["high"]
|
| 222 |
+
return ("๐ต Premium models - professional grade",
|
| 223 |
+
"High",
|
| 224 |
+
"Enterprise ready, complex reasoning, specialized tasks",
|
| 225 |
+
models)
|
| 226 |
else:
|
| 227 |
+
models = LLM_DATABASE["ultra_high"]
|
| 228 |
+
return ("๐ต Top-tier models - enterprise capabilities",
|
| 229 |
+
"Ultra High",
|
| 230 |
+
"Research grade, maximum performance, domain expertise",
|
| 231 |
+
models)
|
| 232 |
|
| 233 |
+
# Enhanced OS detection with better icons
|
| 234 |
def get_os_info(os_name) -> Tuple[str, str]:
|
| 235 |
+
"""Returns (icon, clean_name)"""
|
| 236 |
if pd.isna(os_name):
|
| 237 |
+
return "๐ป", "Not specified"
|
| 238 |
+
|
| 239 |
os = str(os_name).lower()
|
| 240 |
if "windows" in os:
|
| 241 |
return "๐ช", os_name
|
| 242 |
+
elif "mac" in os or "darwin" in os:
|
| 243 |
return "๐", os_name
|
| 244 |
elif "linux" in os or "ubuntu" in os:
|
| 245 |
return "๐ง", os_name
|
|
|
|
| 248 |
elif "ios" in os:
|
| 249 |
return "๐ฑ", os_name
|
| 250 |
else:
|
| 251 |
+
return "๐ป", os_name
|
| 252 |
|
| 253 |
+
# Performance visualization
|
| 254 |
def create_performance_chart(df):
|
| 255 |
+
"""Create a performance distribution chart"""
|
| 256 |
laptop_rams = df["Laptop RAM"].apply(extract_numeric_ram).dropna()
|
| 257 |
mobile_rams = df["Mobile RAM"].apply(extract_numeric_ram).dropna()
|
| 258 |
+
|
| 259 |
fig = go.Figure()
|
| 260 |
+
|
| 261 |
+
fig.add_trace(go.Histogram(
|
| 262 |
+
x=laptop_rams,
|
| 263 |
+
name="Laptop RAM",
|
| 264 |
+
opacity=0.7,
|
| 265 |
+
nbinsx=10
|
| 266 |
+
))
|
| 267 |
+
|
| 268 |
+
fig.add_trace(go.Histogram(
|
| 269 |
+
x=mobile_rams,
|
| 270 |
+
name="Mobile RAM",
|
| 271 |
+
opacity=0.7,
|
| 272 |
+
nbinsx=10
|
| 273 |
+
))
|
| 274 |
+
|
| 275 |
fig.update_layout(
|
| 276 |
+
title="RAM Distribution Across Devices",
|
| 277 |
xaxis_title="RAM (GB)",
|
| 278 |
+
yaxis_title="Number of Students",
|
| 279 |
barmode='overlay',
|
| 280 |
height=400
|
| 281 |
)
|
| 282 |
+
|
| 283 |
return fig
|
| 284 |
|
| 285 |
+
# Enhanced model details display function
|
| 286 |
+
def display_model_categories(models_dict: Dict[str, List[Dict]], ram_gb: int):
|
| 287 |
+
"""Display models organized by category with download sizes"""
|
| 288 |
if not models_dict:
|
| 289 |
return
|
| 290 |
+
|
| 291 |
+
st.markdown(f"### ๐ฏ Recommended Models for {ram_gb}GB RAM:")
|
| 292 |
+
|
| 293 |
for category, model_list in models_dict.items():
|
| 294 |
if model_list:
|
| 295 |
+
with st.expander(f"๐ {category.replace('_', ' ').title()} Models"):
|
| 296 |
+
for model in model_list[:8]: # Limit to top 8 per category
|
| 297 |
+
col1, col2, col3 = st.columns([3, 1, 2])
|
| 298 |
+
with col1:
|
| 299 |
+
st.markdown(f"**{model['name']}**")
|
| 300 |
+
with col2:
|
| 301 |
+
st.markdown(f"`{model['size']}`")
|
| 302 |
+
with col3:
|
| 303 |
+
st.markdown(f"*{model['description']}*")
|
| 304 |
+
|
| 305 |
+
# Main App
|
| 306 |
st.title("๐ง LLM Compatibility Advisor")
|
| 307 |
+
st.markdown("Get personalized recommendations from **150+ popular open source AI models** with download sizes!")
|
| 308 |
|
| 309 |
+
# Load data
|
| 310 |
df, error = load_data()
|
| 311 |
+
|
| 312 |
if error:
|
| 313 |
st.error(error)
|
| 314 |
+
st.info("Please ensure the Excel file 'BITS_INTERNS.xlsx' is in the same directory as this script.")
|
| 315 |
st.stop()
|
| 316 |
+
|
| 317 |
if df is None or df.empty:
|
| 318 |
+
st.error("No data found in the Excel file.")
|
| 319 |
st.stop()
|
| 320 |
|
| 321 |
+
# Sidebar filters and info
|
| 322 |
with st.sidebar:
|
| 323 |
+
st.header("๐ Filters & Info")
|
| 324 |
+
|
| 325 |
+
# Performance tier filter
|
| 326 |
+
performance_filter = st.multiselect(
|
| 327 |
+
"Filter by Performance Tier:",
|
| 328 |
+
["Ultra Low", "Low", "Moderate-Low", "Moderate", "Good", "High", "Ultra High", "Unknown"],
|
| 329 |
+
default=["Ultra Low", "Low", "Moderate-Low", "Moderate", "Good", "High", "Ultra High", "Unknown"]
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
# Model category filter
|
| 333 |
+
st.subheader("Model Categories")
|
| 334 |
+
show_categories = st.multiselect(
|
| 335 |
+
"Show specific categories:",
|
| 336 |
+
["general", "code", "chat", "reasoning", "multimodal"],
|
| 337 |
+
default=["general", "code", "chat"]
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
st.markdown("---")
|
| 341 |
+
st.markdown("### ๐ Quick Stats")
|
| 342 |
st.metric("Total Students", len(df))
|
| 343 |
+
st.metric("Popular Models", "150+")
|
| 344 |
+
|
| 345 |
+
# Calculate average RAM
|
| 346 |
avg_laptop_ram = df["Laptop RAM"].apply(extract_numeric_ram).mean()
|
| 347 |
avg_mobile_ram = df["Mobile RAM"].apply(extract_numeric_ram).mean()
|
| 348 |
+
|
| 349 |
if not pd.isna(avg_laptop_ram):
|
| 350 |
st.metric("Avg Laptop RAM", f"{avg_laptop_ram:.1f} GB")
|
| 351 |
if not pd.isna(avg_mobile_ram):
|
| 352 |
st.metric("Avg Mobile RAM", f"{avg_mobile_ram:.1f} GB")
|
| 353 |
|
| 354 |
+
# User selection with search
|
| 355 |
st.subheader("๐ค Individual Student Analysis")
|
| 356 |
+
selected_user = st.selectbox(
|
|
|
|
|
|
|
|
|
|
| 357 |
"Choose a student:",
|
| 358 |
+
options=[""] + list(df["Full Name"].unique()),
|
| 359 |
+
format_func=lambda x: "Select a student..." if x == "" else x
|
| 360 |
)
|
| 361 |
|
| 362 |
+
if selected_user:
|
|
|
|
| 363 |
user_data = df[df["Full Name"] == selected_user].iloc[0]
|
| 364 |
+
|
| 365 |
+
# Enhanced user display
|
| 366 |
col1, col2 = st.columns(2)
|
| 367 |
+
|
| 368 |
with col1:
|
| 369 |
+
st.markdown("### ๐ป Laptop Configuration")
|
| 370 |
laptop_os_icon, laptop_os_name = get_os_info(user_data.get('Laptop Operating System'))
|
| 371 |
laptop_ram = user_data.get('Laptop RAM', 'Not specified')
|
| 372 |
+
laptop_rec, laptop_tier, laptop_info, laptop_models = recommend_llm(laptop_ram)
|
| 373 |
+
laptop_ram_gb = extract_numeric_ram(laptop_ram) or 0
|
| 374 |
+
|
| 375 |
st.markdown(f"**OS:** {laptop_os_icon} {laptop_os_name}")
|
| 376 |
st.markdown(f"**RAM:** {laptop_ram}")
|
| 377 |
+
st.markdown(f"**Performance Tier:** {laptop_tier}")
|
| 378 |
+
|
| 379 |
+
st.success(f"**๐ก Recommendation:** {laptop_rec}")
|
| 380 |
+
st.info(f"**โน๏ธ Notes:** {laptop_info}")
|
| 381 |
+
|
| 382 |
+
# Display detailed models for laptop
|
| 383 |
+
if laptop_models:
|
| 384 |
+
filtered_models = {k: v for k, v in laptop_models.items() if k in show_categories}
|
| 385 |
+
display_model_categories(filtered_models, laptop_ram_gb)
|
| 386 |
+
|
| 387 |
with col2:
|
| 388 |
+
st.markdown("### ๐ฑ Mobile Configuration")
|
| 389 |
mobile_os_icon, mobile_os_name = get_os_info(user_data.get('Mobile Operating System'))
|
| 390 |
mobile_ram = user_data.get('Mobile RAM', 'Not specified')
|
| 391 |
+
mobile_rec, mobile_tier, mobile_info, mobile_models = recommend_llm(mobile_ram)
|
| 392 |
+
mobile_ram_gb = extract_numeric_ram(mobile_ram) or 0
|
| 393 |
+
|
| 394 |
st.markdown(f"**OS:** {mobile_os_icon} {mobile_os_name}")
|
| 395 |
st.markdown(f"**RAM:** {mobile_ram}")
|
| 396 |
+
st.markdown(f"**Performance Tier:** {mobile_tier}")
|
| 397 |
+
|
| 398 |
+
st.success(f"**๐ก Recommendation:** {mobile_rec}")
|
| 399 |
+
st.info(f"**โน๏ธ Notes:** {mobile_info}")
|
| 400 |
+
|
| 401 |
+
# Display detailed models for mobile
|
| 402 |
+
if mobile_models:
|
| 403 |
+
filtered_models = {k: v for k, v in mobile_models.items() if k in show_categories}
|
| 404 |
+
display_model_categories(filtered_models, mobile_ram_gb)
|
| 405 |
+
|
| 406 |
+
# Batch Analysis Section
|
| 407 |
st.markdown("---")
|
| 408 |
+
st.header("๐ Batch Analysis & Insights")
|
| 409 |
+
|
| 410 |
+
# Create enhanced batch table
|
| 411 |
df_display = df[["Full Name", "Laptop RAM", "Mobile RAM"]].copy()
|
|
|
|
|
|
|
|
|
|
| 412 |
|
| 413 |
+
# Add recommendations and performance tiers
|
| 414 |
+
laptop_recommendations = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[0])
|
| 415 |
+
mobile_recommendations = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[0])
|
| 416 |
+
laptop_tiers = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[1])
|
| 417 |
+
mobile_tiers = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[1])
|
| 418 |
+
|
| 419 |
+
df_display["Laptop LLM"] = laptop_recommendations
|
| 420 |
+
df_display["Mobile LLM"] = mobile_recommendations
|
| 421 |
+
df_display["Laptop Tier"] = laptop_tiers
|
| 422 |
+
df_display["Mobile Tier"] = mobile_tiers
|
| 423 |
+
|
| 424 |
+
# Filter based on sidebar selections (RAM range filter removed)
|
| 425 |
+
mask = (laptop_tiers.isin(performance_filter) | mobile_tiers.isin(performance_filter))
|
| 426 |
+
|
| 427 |
+
df_filtered = df_display[mask]
|
| 428 |
+
|
| 429 |
+
# Display filtered table
|
| 430 |
+
st.subheader(f"๐ Student Recommendations ({len(df_filtered)} students)")
|
| 431 |
+
st.dataframe(
|
| 432 |
+
df_filtered,
|
| 433 |
+
use_container_width=True,
|
| 434 |
+
column_config={
|
| 435 |
+
"Full Name": st.column_config.TextColumn("Student Name", width="medium"),
|
| 436 |
+
"Laptop RAM": st.column_config.TextColumn("Laptop RAM", width="small"),
|
| 437 |
+
"Mobile RAM": st.column_config.TextColumn("Mobile RAM", width="small"),
|
| 438 |
+
"Laptop LLM": st.column_config.TextColumn("Laptop Recommendation", width="large"),
|
| 439 |
+
"Mobile LLM": st.column_config.TextColumn("Mobile Recommendation", width="large"),
|
| 440 |
+
"Laptop Tier": st.column_config.TextColumn("L-Tier", width="small"),
|
| 441 |
+
"Mobile Tier": st.column_config.TextColumn("M-Tier", width="small"),
|
| 442 |
+
}
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
# Performance distribution chart
|
| 446 |
if len(df) > 1:
|
| 447 |
+
st.subheader("๐ RAM Distribution Analysis")
|
| 448 |
fig = create_performance_chart(df)
|
| 449 |
st.plotly_chart(fig, use_container_width=True)
|
| 450 |
|
| 451 |
+
# Performance tier summary
|
| 452 |
+
st.subheader("๐ฏ Performance Tier Summary")
|
| 453 |
+
tier_col1, tier_col2 = st.columns(2)
|
| 454 |
+
|
| 455 |
+
with tier_col1:
|
| 456 |
+
st.markdown("**Laptop Performance Tiers:**")
|
| 457 |
+
laptop_tier_counts = laptop_tiers.value_counts()
|
| 458 |
+
for tier, count in laptop_tier_counts.items():
|
| 459 |
+
percentage = (count / len(laptop_tiers)) * 100
|
| 460 |
+
st.write(f"โข {tier}: {count} students ({percentage:.1f}%)")
|
| 461 |
+
|
| 462 |
+
with tier_col2:
|
| 463 |
+
st.markdown("**Mobile Performance Tiers:**")
|
| 464 |
+
mobile_tier_counts = mobile_tiers.value_counts()
|
| 465 |
+
for tier, count in mobile_tier_counts.items():
|
| 466 |
+
percentage = (count / len(mobile_tier_counts)) * 100
|
| 467 |
+
st.write(f"โข {tier}: {count} students ({percentage:.1f}%)")
|
| 468 |
+
|
| 469 |
+
# Model Explorer Section
|
| 470 |
st.markdown("---")
|
| 471 |
+
st.header("๐ Popular Model Explorer")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 472 |
|
| 473 |
+
explorer_col1, explorer_col2 = st.columns(2)
|
| 474 |
+
|
| 475 |
+
with explorer_col1:
|
| 476 |
+
selected_ram_range = st.selectbox(
|
| 477 |
+
"Select RAM range to explore models:",
|
| 478 |
+
["โค2GB (Ultra Low)", "3-4GB (Low)", "5-6GB (Moderate-Low)",
|
| 479 |
+
"7-8GB (Moderate)", "9-16GB (Good)", "17-32GB (High)", ">32GB (Ultra High)"]
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
with explorer_col2:
|
| 483 |
+
selected_category = st.selectbox(
|
| 484 |
+
"Select model category:",
|
| 485 |
+
["general", "code", "chat", "reasoning", "multimodal"]
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
# Map selection to database key
|
| 489 |
ram_mapping = {
|
| 490 |
"โค2GB (Ultra Low)": "ultra_low",
|
| 491 |
"3-4GB (Low)": "low",
|
| 492 |
+
"5-6GB (Moderate-Low)": "moderate_low",
|
| 493 |
+
"7-8GB (Moderate)": "moderate",
|
| 494 |
"9-16GB (Good)": "good",
|
| 495 |
"17-32GB (High)": "high",
|
| 496 |
">32GB (Ultra High)": "ultra_high"
|
| 497 |
}
|
| 498 |
|
| 499 |
+
selected_ram_key = ram_mapping[selected_ram_range]
|
| 500 |
+
if selected_ram_key in LLM_DATABASE and selected_category in LLM_DATABASE[selected_ram_key]:
|
| 501 |
+
models = LLM_DATABASE[selected_ram_key][selected_category]
|
| 502 |
+
|
| 503 |
+
st.subheader(f"๐ฏ {selected_category.title()} Models for {selected_ram_range}")
|
| 504 |
+
|
| 505 |
+
# Display models in a detailed table
|
| 506 |
+
for model in models:
|
| 507 |
+
with st.container():
|
| 508 |
+
col1, col2, col3 = st.columns([3, 1, 3])
|
| 509 |
+
with col1:
|
| 510 |
+
st.markdown(f"### {model['name']}")
|
| 511 |
+
with col2:
|
| 512 |
+
st.markdown(f"**{model['size']}**")
|
| 513 |
+
st.caption("Download Size")
|
| 514 |
+
with col3:
|
| 515 |
+
st.markdown(f"*{model['description']}*")
|
| 516 |
+
# Add download suggestion
|
| 517 |
+
if "Llama" in model['name']:
|
| 518 |
+
st.caption("๐ Available on Hugging Face & Ollama")
|
| 519 |
+
elif "Mistral" in model['name']:
|
| 520 |
+
st.caption("๐ Available on Hugging Face & Mistral AI")
|
| 521 |
+
elif "Gemma" in model['name']:
|
| 522 |
+
st.caption("๐ Available on Hugging Face & Google")
|
| 523 |
+
else:
|
| 524 |
+
st.caption("๐ Available on Hugging Face")
|
| 525 |
+
st.markdown("---")
|
| 526 |
+
else:
|
| 527 |
+
st.info(f"No {selected_category} models available for {selected_ram_range}")
|
| 528 |
+
|
| 529 |
+
# Enhanced reference guide
|
| 530 |
+
with st.expander("๐ Model Guide & Download Information"):
|
| 531 |
st.markdown("""
|
| 532 |
+
## ๐ Popular Models by Category
|
| 533 |
+
|
| 534 |
+
### ๐ฏ **General Purpose Champions**
|
| 535 |
+
- **Llama-2 Series**: Meta's flagship models (7B, 13B, 70B)
|
| 536 |
+
- **Mistral Series**: Excellent efficiency and performance
|
| 537 |
+
- **Gemma**: Google's efficient models (2B, 7B)
|
| 538 |
+
- **Phi**: Microsoft's compact powerhouses
|
| 539 |
+
|
| 540 |
+
### ๐ป **Code Specialists**
|
| 541 |
+
- **CodeLlama**: Meta's dedicated coding models
|
| 542 |
+
- **StarCoder**: BigCode's programming experts
|
| 543 |
+
- **WizardCoder**: Enhanced coding capabilities
|
| 544 |
+
- **DeepSeek-Coder**: Chinese tech giant's coder
|
| 545 |
+
|
| 546 |
+
### ๐ฌ **Chat Optimized**
|
| 547 |
+
- **Vicuna**: UC Berkeley's ChatGPT alternative
|
| 548 |
+
- **Zephyr**: HuggingFace's chat specialist
|
| 549 |
+
- **OpenChat**: High-quality conversation models
|
| 550 |
+
- **Neural-Chat**: Intel-optimized chat models
|
| 551 |
+
|
| 552 |
+
### ๐งฎ **Reasoning Masters**
|
| 553 |
+
- **WizardMath**: Mathematical problem solving
|
| 554 |
+
- **MetaMath**: Advanced arithmetic reasoning
|
| 555 |
+
- **Orca-2**: Microsoft's reasoning specialist
|
| 556 |
+
- **Goat**: Specialized arithmetic model
|
| 557 |
+
|
| 558 |
+
### ๐๏ธ **Multimodal Models**
|
| 559 |
+
- **LLaVA**: Large Language and Vision Assistant
|
| 560 |
+
- **MiniGPT-4**: Multimodal conversational AI
|
| 561 |
+
|
| 562 |
+
## ๐พ Download Size Reference
|
| 563 |
+
|
| 564 |
+
| Model Size | FP16 | 8-bit | 4-bit | Use Case |
|
| 565 |
+
|------------|------|-------|-------|----------|
|
| 566 |
+
| **1-3B** | 2-6GB | 1-3GB | 0.5-1.5GB | Mobile, Edge |
|
| 567 |
+
| **7B** | 13GB | 7GB | 3.5GB | Desktop, Laptop |
|
| 568 |
+
| **13B** | 26GB | 13GB | 7GB | Workstation |
|
| 569 |
+
| **30-34B** | 60GB | 30GB | 15GB | Server, Cloud |
|
| 570 |
+
| **70B** | 140GB | 70GB | 35GB | High-end Server |
|
| 571 |
+
|
| 572 |
+
## ๐ ๏ธ Where to Download
|
| 573 |
+
|
| 574 |
+
### **Primary Sources**
|
| 575 |
+
- **๐ค Hugging Face**: Largest repository with 400,000+ models
|
| 576 |
+
- **๐ฆ Ollama**: Simple CLI tool for local deployment
|
| 577 |
+
- **๐ฆ LM Studio**: User-friendly GUI for model management
|
| 578 |
+
|
| 579 |
+
### **Quantized Formats**
|
| 580 |
+
- **GGUF**: Best for CPU inference (llama.cpp)
|
| 581 |
+
- **GPTQ**: GPU-optimized quantization
|
| 582 |
+
- **AWQ**: Advanced weight quantization
|
| 583 |
+
|
| 584 |
+
### **Download Tips**
|
| 585 |
+
- Use `git lfs` for large models from Hugging Face
|
| 586 |
+
- Consider bandwidth and storage before downloading
|
| 587 |
+
- Start with 4-bit quantized versions for testing
|
| 588 |
+
- Use `ollama pull model_name` for easiest setup
|
| 589 |
+
|
| 590 |
+
## ๐ง Optimization Strategies
|
| 591 |
+
|
| 592 |
+
### **Memory Reduction**
|
| 593 |
+
- **4-bit quantization**: 75% memory reduction
|
| 594 |
+
- **8-bit quantization**: 50% memory reduction
|
| 595 |
+
- **CPU offloading**: Use system RAM for overflow
|
| 596 |
+
|
| 597 |
+
### **Speed Optimization**
|
| 598 |
+
- **GPU acceleration**: CUDA, ROCm, Metal
|
| 599 |
+
- **Batch processing**: Process multiple requests
|
| 600 |
+
- **Context caching**: Reuse computations
|
| 601 |
+
""")
|
| 602 |
|
| 603 |
+
# Footer with updated resources
|
| 604 |
+
st.markdown("---")
|
| 605 |
+
st.markdown("""
|
| 606 |
+
### ๐ Essential Download & Deployment Tools
|
| 607 |
|
| 608 |
+
**๐ฆ Easy Model Deployment:**
|
| 609 |
+
- [**Ollama**](https://ollama.ai/) โ `curl -fsSL https://ollama.ai/install.sh | sh`
|
| 610 |
+
- [**LM Studio**](https://lmstudio.ai/) โ Drag-and-drop GUI for running models locally
|
| 611 |
+
- [**GPT4All**](https://gpt4all.io/) โ Cross-platform desktop app for local LLMs
|
| 612 |
|
| 613 |
+
**๐ค Model Repositories:**
|
| 614 |
+
- [**Hugging Face Hub**](https://huggingface.co/models) โ Filter by model size, task, and license
|
| 615 |
+
- [**TheBloke's Quantizations**](https://huggingface.co/TheBloke) โ Pre-quantized models in GGUF/GPTQ format
|
| 616 |
+
- [**Awesome LLM**](https://github.com/Hannibal046/Awesome-LLMs) โ Curated list of models and resources
|
|
|
|
| 617 |
|
| 618 |
+
|
| 619 |
+
---
|
| 620 |
+
""")
|