Spaces:
Sleeping
Sleeping
| import base64 | |
| import os | |
| from datetime import datetime | |
| import pandas as pd | |
| import requests | |
| import whisper | |
| import wikipedia | |
| from dotenv import find_dotenv, load_dotenv | |
| from langchain.chat_models import init_chat_model | |
| from langchain_community.document_loaders import ( | |
| UnstructuredPDFLoader, UnstructuredPowerPointLoader, | |
| UnstructuredWordDocumentLoader, WebBaseLoader) | |
| from langchain_community.tools import DuckDuckGoSearchRun | |
| from langchain_core.prompts import ChatPromptTemplate | |
| from langchain_core.tools import tool | |
| from youtube_transcript_api import YouTubeTranscriptApi | |
| from yt_dlp import YoutubeDL | |
| def get_weather_info(location: str) -> str: | |
| """Fetches dummy weather information for a given location. | |
| Usage: | |
| ``` | |
| # Initialize the tool | |
| weather_info_tool = Tool( | |
| name="get_weather_info", | |
| func=get_weather_info, | |
| description="Fetches weather information for a given location.") | |
| ``` | |
| """ | |
| load_dotenv(find_dotenv()) | |
| api_key = os.getenv("OPENWEATHERMAP_API_KEY") | |
| url = ( | |
| f"https://api.openweathermap.org/data/2.5/" | |
| f"weather?q={location}&appid={api_key}&units=metric" | |
| ) | |
| res = requests.get(url, timeout=15) | |
| data = res.json() | |
| humidity = data["main"]["humidity"] | |
| pressure = data["main"]["pressure"] | |
| wind = data["wind"]["speed"] | |
| description = data["weather"][0]["description"] | |
| temp = data["main"]["temp"] | |
| min_temp = data["main"]["temp_min"] | |
| max_temp = data["main"]["temp_max"] | |
| return ( | |
| f"Weather in {location}: {description}, " | |
| f"Temperature: {temp}°C, Min: {min_temp}°C, Max: {max_temp}°C, " | |
| f"Humidity: {humidity}%, Pressure: {pressure} hPa, " | |
| f"Wind Speed: {wind} m/s" | |
| ) | |
| def add(a: int, b: int) -> int: | |
| """Adds two numbers together. | |
| Args: | |
| a (int): The first number. | |
| b (int): The second number. | |
| """ | |
| return a + b | |
| def get_sum(list_of_numbers: list[int]) -> int: | |
| """Sums a list of numbers. | |
| Args: | |
| list_of_numbers (list[int]): The list of numbers to sum. | |
| """ | |
| return sum(list_of_numbers) | |
| def subtract(a: int, b: int) -> int: | |
| """Subtracts the second number from the first. | |
| Args: | |
| a (int): The first number. | |
| b (int): The second number. | |
| """ | |
| return a - b | |
| def multiply(a: int, b: int) -> int: | |
| """Multiplies two numbers together. | |
| Args: | |
| a (int): The first number. | |
| b (int): The second number. | |
| """ | |
| return a * b | |
| def divide(a: int, b: int) -> float: | |
| """Divides the first number by the second. | |
| Args: | |
| a (int): The first number. | |
| b (int): The second number. | |
| """ | |
| if b == 0: | |
| raise ValueError("Cannot divide by zero.") | |
| return a / b | |
| def get_current_time_and_date() -> str: | |
| """Returns the current time and date in ISO format.""" | |
| return datetime.now().isoformat() | |
| def reverse_text(text: str) -> str: | |
| """Reverses the given text. | |
| Args: | |
| text (str): The text to reverse. | |
| """ | |
| return text[::-1] | |
| def wiki_search(query: str) -> str: | |
| """Searches Wikipedia for a given query and returns the summary. | |
| Args: | |
| query (str): The search query. | |
| """ | |
| search_results = wikipedia.search(query) | |
| if not search_results: | |
| return "No results found." | |
| page_title = search_results[0] | |
| summary = wikipedia.summary(page_title) | |
| # Alternatively wikipedia.page(page_title).content[:max_length] | |
| return f"Title: {page_title}\n\nSummary: {summary}" | |
| def web_search(query: str) -> str: | |
| """Searches the web for a given query and returns the first result. | |
| Args: | |
| query (str): The search query. | |
| """ | |
| search_tool = DuckDuckGoSearchRun() | |
| results = search_tool.invoke(query) | |
| if results: | |
| return results | |
| else: | |
| return "No results found." | |
| def visit_website(url: str) -> str: | |
| """Visits a website and returns the content. | |
| Args: | |
| url (str): The URL of the website to visit. | |
| """ | |
| loader = WebBaseLoader(url) | |
| documents = loader.load() | |
| if documents: | |
| return documents[0].page_content | |
| else: | |
| return "No content found." | |
| def get_youtube_transcript(video_url: str, return_timestamps: bool = False) -> str: | |
| """Fetches the transcript of a YouTube video. | |
| Args: | |
| video_url (str): The URL of the YouTube video. | |
| return_timestamps (bool): If True, returns timestamps with the transcript. Otherwise, returns only the text. | |
| """ | |
| try: | |
| video_id = video_url.split("v=")[-1] | |
| transcript = YouTubeTranscriptApi.get_transcript(video_id) | |
| if return_timestamps: | |
| sentences = [] | |
| for t in transcript: | |
| start = t["start"] | |
| end = start + t["duration"] | |
| sentences.append(f"{start:.2f} - {end:.2f}: {t['text']}") | |
| return "\n".join(sentences) | |
| else: | |
| return "\n".join([t["text"] for t in transcript]) | |
| except Exception as e: | |
| return f"Error fetching transcript: {e}" | |
| def get_youtube_video_info(video_url: str) -> str: | |
| """Fetches information about a YouTube video. | |
| Args: | |
| video_url (str): The URL of the YouTube video. | |
| """ | |
| try: | |
| ydl_opts = { | |
| "quiet": True, | |
| "skip_download": True, | |
| } | |
| with YoutubeDL(ydl_opts) as ydl: | |
| info = ydl.extract_info(video_url, download=False) | |
| video_info = { | |
| "Title": info.get("title"), | |
| "Description": info.get("description"), | |
| "Uploader": info.get("uploader"), | |
| "Upload date": info.get("upload_date"), | |
| "Duration": info.get("duration"), | |
| "View count": info.get("view_count"), | |
| "Like count": info.get("like_count"), | |
| } | |
| video_info_filtered = {k: v for k, v in video_info.items() if v is not None} | |
| video_info_str = "\n".join( | |
| [f"{k}: {v}" for k, v in video_info_filtered.items()] | |
| ) | |
| return video_info_str | |
| except Exception as e: | |
| return f"Error fetching video info: {e}" | |
| def encode_image(image_path): | |
| with open(image_path, "rb") as image_file: | |
| return base64.b64encode(image_file.read()).decode("utf-8") | |
| def ask_about_image(image_path: str, question: str) -> str: | |
| """Performs vision-based question answering on an image. | |
| Args: | |
| image_path (str): The path to the image file. | |
| question (str): Your question about the image, as a natural language sentence. Provide as much context as possible. | |
| """ | |
| load_dotenv(find_dotenv()) | |
| llm = init_chat_model("groq:meta-llama/llama-4-scout-17b-16e-instruct") | |
| prompt = ChatPromptTemplate( | |
| [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "text", | |
| "text": "Please write a concise caption for the image that helps answer the following question: {question}", | |
| }, | |
| { | |
| "type": "image_url", | |
| "image_url": { | |
| "url": "data:image/jpeg;base64,{base64_image}", | |
| }, | |
| }, | |
| ], | |
| } | |
| ] | |
| ) | |
| chain = prompt | llm | |
| response = chain.invoke( | |
| {"question": question, "base64_image": encode_image(image_path)} | |
| ) | |
| return response.text() | |
| def transcribe_audio(audio_path: str) -> str: | |
| """Transcribes audio to text. | |
| Args: | |
| audio_path (str): The path to the audio file. | |
| """ | |
| model = whisper.load_model("base") | |
| result = model.transcribe(audio_path) | |
| text = result.text | |
| return text | |
| def get_table_description(table: pd.DataFrame) -> str: | |
| """Generates a description of the table. If applicable, calculates sum and mean of numeric | |
| columns. | |
| Args: | |
| table (pd.DataFrame): The table to describe. | |
| """ | |
| if table.empty: | |
| return "The table is empty." | |
| description = [] | |
| total_sum = 0 | |
| for column in table.select_dtypes(include=[int, float]).columns: | |
| column_sum = table[column].sum() | |
| column_mean = table[column].mean() | |
| description.append( | |
| f"Column '{column}': Sum = {column_sum}, Mean = {column_mean:.2f}" | |
| ) | |
| total_sum += column_sum | |
| if total_sum: | |
| description.append(f"Total Sum of all numeric columns: {total_sum}") | |
| if description: | |
| description = "\n".join(description) | |
| else: | |
| description = "No numeric columns to summarize." | |
| # Add the number of rows and columns | |
| description += f"\n\nTable has {table.shape[0]} rows and {table.shape[1]} columns." | |
| df_as_markdown = table.to_markdown() | |
| description += f"\n\nTable:\n{df_as_markdown}" | |
| return description | |
| def inspect_file_as_text(file_path: str) -> str: | |
| """This tool reads a file as markdown text. It handles [".csv", ".xlsx", ".pptx", ".wav", | |
| ".mp3", ".m4a", ".flac", ".pdf", ".docx"], and all other types of text files. IT DOES NOT | |
| HANDLE IMAGES. | |
| Args: | |
| file_path (str): The path to the file you want to read as text. If it is an image, use `vision_qa` tool. | |
| """ | |
| try: | |
| suffix = os.path.splitext(file_path)[-1] | |
| if suffix in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff"]: | |
| raise Exception( | |
| "Cannot use inspect_file_as_text tool with images: use `vision_qa` tool instead!" | |
| ) | |
| if suffix in [".csv", ".tsv", ".xlsx"]: | |
| if suffix == ".csv": | |
| df = pd.read_csv(file_path) | |
| elif suffix == ".tsv": | |
| df = pd.read_csv(file_path, sep="\t") | |
| elif suffix == ".xlsx": | |
| df = pd.read_excel(file_path) | |
| else: | |
| raise Exception(f"Unsupported file type: {suffix}") | |
| table_description = get_table_description(df) | |
| return table_description | |
| elif suffix == ".pptx": | |
| doc = UnstructuredPowerPointLoader(file_path) | |
| return doc.load()[0].page_content | |
| elif suffix == ".pdf": | |
| doc = UnstructuredPDFLoader(file_path) | |
| return doc.load()[0].page_content | |
| elif suffix == ".docx": | |
| doc = UnstructuredWordDocumentLoader(file_path) | |
| return doc.load()[0].page_content | |
| elif suffix in [".wav", ".mp3", ".m4a", ".flac"]: | |
| return transcribe_audio(file_path) | |
| else: | |
| # All other text files | |
| with open(file_path, "r", encoding="utf-8") as file: | |
| content = file.read() | |
| return content | |
| except Exception as e: | |
| return f"Error file: {e}" | |