Update app.py
Browse files
app.py
CHANGED
|
@@ -357,10 +357,7 @@ def clean_text(text,doc=False,plain_text=False,url=False):
|
|
| 357 |
|
| 358 |
return None, clean_text
|
| 359 |
|
| 360 |
-
|
| 361 |
-
sentence_embedding_model = get_sentence_embedding_model()
|
| 362 |
-
ner_model = get_transformer_pipeline()
|
| 363 |
-
nlp = get_spacy()
|
| 364 |
|
| 365 |
@st.experimental_singleton
|
| 366 |
def get_spacy():
|
|
@@ -388,6 +385,11 @@ def get_ner_pipeline():
|
|
| 388 |
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 389 |
model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 390 |
return pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
|
| 392 |
#Streamlit App
|
| 393 |
|
|
|
|
| 357 |
|
| 358 |
return None, clean_text
|
| 359 |
|
| 360 |
+
|
|
|
|
|
|
|
|
|
|
| 361 |
|
| 362 |
@st.experimental_singleton
|
| 363 |
def get_spacy():
|
|
|
|
| 385 |
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 386 |
model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 387 |
return pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
|
| 388 |
+
|
| 389 |
+
# Load all different models (cached) at start time of the hugginface space
|
| 390 |
+
sentence_embedding_model = get_sentence_embedding_model()
|
| 391 |
+
ner_model = get_transformer_pipeline()
|
| 392 |
+
nlp = get_spacy()
|
| 393 |
|
| 394 |
#Streamlit App
|
| 395 |
|