Update app.py
Browse files
app.py
CHANGED
|
@@ -8,7 +8,9 @@ import validators, re
|
|
| 8 |
from fake_useragent import UserAgent
|
| 9 |
from bs4 import BeautifulSoup
|
| 10 |
import streamlit as st
|
| 11 |
-
from transformers import pipeline
|
|
|
|
|
|
|
| 12 |
import time
|
| 13 |
import base64
|
| 14 |
import requests
|
|
@@ -158,19 +160,235 @@ def summary_downloader(raw_text):
|
|
| 158 |
st.markdown("#### Download Summary as a File ###")
|
| 159 |
href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>'
|
| 160 |
st.markdown(href,unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
def facebook_model():
|
| 164 |
|
| 165 |
summarizer = pipeline('summarization',model='facebook/bart-large-cnn')
|
| 166 |
return summarizer
|
| 167 |
|
| 168 |
-
@st.
|
| 169 |
def schleifer_model():
|
| 170 |
|
| 171 |
summarizer = pipeline('summarization',model='sshleifer/distilbart-cnn-12-6')
|
| 172 |
return summarizer
|
| 173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
#Streamlit App
|
| 175 |
|
| 176 |
st.title("Article Text and Link Extractive Summarizer 📝")
|
|
@@ -211,6 +429,14 @@ st.markdown("---")
|
|
| 211 |
|
| 212 |
url_text = st.text_input("Please Enter a url here")
|
| 213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
st.markdown(
|
| 216 |
"<h3 style='text-align: center; color: red;'>OR</h3>",
|
|
@@ -228,27 +454,19 @@ upload_doc = st.file_uploader(
|
|
| 228 |
"Upload a .txt, .pdf, .docx file for summarization"
|
| 229 |
)
|
| 230 |
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
if is_url:
|
| 234 |
-
# complete text, chunks to summarize (list of sentences for long docs)
|
| 235 |
-
article_title,chunks = article_text_extractor(url=url_text)
|
| 236 |
|
| 237 |
elif upload_doc:
|
|
|
|
| 238 |
|
| 239 |
-
clean_text = chunk_clean_text(preprocess_plain_text(extract_text_from_file(upload_doc)))
|
| 240 |
-
|
| 241 |
-
else:
|
| 242 |
-
|
| 243 |
-
clean_text = chunk_clean_text(preprocess_plain_text(plain_text))
|
| 244 |
-
|
| 245 |
summarize = st.button("Summarize")
|
| 246 |
|
| 247 |
# called on toggle button [summarize]
|
| 248 |
if summarize:
|
| 249 |
if model_type == "Facebook-Bart":
|
| 250 |
-
if
|
| 251 |
-
text_to_summarize =
|
| 252 |
else:
|
| 253 |
text_to_summarize = clean_text
|
| 254 |
|
|
@@ -260,8 +478,8 @@ if summarize:
|
|
| 260 |
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
|
| 261 |
|
| 262 |
elif model_type == "Sshleifer-DistilBart":
|
| 263 |
-
if
|
| 264 |
-
text_to_summarize =
|
| 265 |
else:
|
| 266 |
text_to_summarize = clean_text
|
| 267 |
|
|
@@ -270,19 +488,25 @@ if summarize:
|
|
| 270 |
):
|
| 271 |
summarizer_model = schleifer_model()
|
| 272 |
summarized_text = summarizer_model(text_to_summarize, max_length=max_len, min_length=min_len)
|
| 273 |
-
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
|
| 274 |
-
|
| 275 |
-
# final summarized output
|
| 276 |
-
st.subheader("Summarized text")
|
| 277 |
|
| 278 |
-
|
| 279 |
|
| 280 |
-
|
| 281 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
-
|
| 284 |
|
| 285 |
-
|
| 286 |
|
| 287 |
|
| 288 |
st.markdown("""
|
|
|
|
| 8 |
from fake_useragent import UserAgent
|
| 9 |
from bs4 import BeautifulSoup
|
| 10 |
import streamlit as st
|
| 11 |
+
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
|
| 12 |
+
from sentence_transformers import SentenceTransformer
|
| 13 |
+
import en_core_web_lg
|
| 14 |
import time
|
| 15 |
import base64
|
| 16 |
import requests
|
|
|
|
| 160 |
st.markdown("#### Download Summary as a File ###")
|
| 161 |
href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>'
|
| 162 |
st.markdown(href,unsafe_allow_html=True)
|
| 163 |
+
|
| 164 |
+
def get_all_entities_per_sentence(text):
|
| 165 |
+
doc = nlp(text)
|
| 166 |
|
| 167 |
+
sentences = list(doc.sents)
|
| 168 |
+
|
| 169 |
+
entities_all_sentences = []
|
| 170 |
+
for sentence in sentences:
|
| 171 |
+
entities_this_sentence = []
|
| 172 |
+
|
| 173 |
+
# SPACY ENTITIES
|
| 174 |
+
for entity in sentence.ents:
|
| 175 |
+
entities_this_sentence.append(str(entity))
|
| 176 |
+
|
| 177 |
+
# FLAIR ENTITIES (CURRENTLY NOT USED)
|
| 178 |
+
# sentence_entities = Sentence(str(sentence))
|
| 179 |
+
# tagger.predict(sentence_entities)
|
| 180 |
+
# for entity in sentence_entities.get_spans('ner'):
|
| 181 |
+
# entities_this_sentence.append(entity.text)
|
| 182 |
+
|
| 183 |
+
# XLM ENTITIES
|
| 184 |
+
entities_xlm = [entity["word"] for entity in ner_model(str(sentence))]
|
| 185 |
+
for entity in entities_xlm:
|
| 186 |
+
entities_this_sentence.append(str(entity))
|
| 187 |
+
|
| 188 |
+
entities_all_sentences.append(entities_this_sentence)
|
| 189 |
+
|
| 190 |
+
return entities_all_sentences
|
| 191 |
+
|
| 192 |
+
def get_all_entities(text):
|
| 193 |
+
all_entities_per_sentence = get_all_entities_per_sentence(text)
|
| 194 |
+
return list(itertools.chain.from_iterable(all_entities_per_sentence))
|
| 195 |
+
|
| 196 |
+
def get_and_compare_entities(article_content,summary_output):
|
| 197 |
+
|
| 198 |
+
all_entities_per_sentence = get_all_entities_per_sentence(article_content)
|
| 199 |
+
entities_article = list(itertools.chain.from_iterable(all_entities_per_sentence))
|
| 200 |
+
|
| 201 |
+
all_entities_per_sentence = get_all_entities_per_sentence(summary_output)
|
| 202 |
+
entities_summary = list(itertools.chain.from_iterable(all_entities_per_sentence))
|
| 203 |
+
|
| 204 |
+
matched_entities = []
|
| 205 |
+
unmatched_entities = []
|
| 206 |
+
for entity in entities_summary:
|
| 207 |
+
if any(entity.lower() in substring_entity.lower() for substring_entity in entities_article):
|
| 208 |
+
matched_entities.append(entity)
|
| 209 |
+
elif any(
|
| 210 |
+
np.inner(sentence_embedding_model.encode(entity, show_progress_bar=False),
|
| 211 |
+
sentence_embedding_model.encode(art_entity, show_progress_bar=False)) > 0.9 for
|
| 212 |
+
art_entity in entities_article):
|
| 213 |
+
matched_entities.append(entity)
|
| 214 |
+
else:
|
| 215 |
+
unmatched_entities.append(entity)
|
| 216 |
+
|
| 217 |
+
matched_entities = list(dict.fromkeys(matched_entities))
|
| 218 |
+
unmatched_entities = list(dict.fromkeys(unmatched_entities))
|
| 219 |
+
|
| 220 |
+
matched_entities_to_remove = []
|
| 221 |
+
unmatched_entities_to_remove = []
|
| 222 |
+
|
| 223 |
+
for entity in matched_entities:
|
| 224 |
+
for substring_entity in matched_entities:
|
| 225 |
+
if entity != substring_entity and entity.lower() in substring_entity.lower():
|
| 226 |
+
matched_entities_to_remove.append(entity)
|
| 227 |
+
|
| 228 |
+
for entity in unmatched_entities:
|
| 229 |
+
for substring_entity in unmatched_entities:
|
| 230 |
+
if entity != substring_entity and entity.lower() in substring_entity.lower():
|
| 231 |
+
unmatched_entities_to_remove.append(entity)
|
| 232 |
+
|
| 233 |
+
matched_entities_to_remove = list(dict.fromkeys(matched_entities_to_remove))
|
| 234 |
+
unmatched_entities_to_remove = list(dict.fromkeys(unmatched_entities_to_remove))
|
| 235 |
+
|
| 236 |
+
for entity in matched_entities_to_remove:
|
| 237 |
+
matched_entities.remove(entity)
|
| 238 |
+
for entity in unmatched_entities_to_remove:
|
| 239 |
+
unmatched_entities.remove(entity)
|
| 240 |
+
|
| 241 |
+
return matched_entities, unmatched_entities
|
| 242 |
+
|
| 243 |
+
def highlight_entities(article_content,summary_output):
|
| 244 |
+
|
| 245 |
+
markdown_start_red = "<mark class=\"entity\" style=\"background: rgb(238, 135, 135);\">"
|
| 246 |
+
markdown_start_green = "<mark class=\"entity\" style=\"background: rgb(121, 236, 121);\">"
|
| 247 |
+
markdown_end = "</mark>"
|
| 248 |
+
|
| 249 |
+
matched_entities, unmatched_entities = get_and_compare_entities(article_content,summary_output)
|
| 250 |
+
|
| 251 |
+
for entity in matched_entities:
|
| 252 |
+
summary_content = summary_output.replace(entity, markdown_start_green + entity + markdown_end)
|
| 253 |
+
|
| 254 |
+
for entity in unmatched_entities:
|
| 255 |
+
summary_content = summary_output.replace(entity, markdown_start_red + entity + markdown_end)
|
| 256 |
+
soup = BeautifulSoup(summary_content, features="html.parser")
|
| 257 |
+
return HTML_WRAPPER.format(soup)
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def render_dependency_parsing(text: Dict):
|
| 261 |
+
html = render_sentence_custom(text, nlp)
|
| 262 |
+
html = html.replace("\n\n", "\n")
|
| 263 |
+
st.write(get_svg(html), unsafe_allow_html=True)
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def check_dependency(article: bool):
|
| 267 |
+
if article:
|
| 268 |
+
text = st.session_state.article_text
|
| 269 |
+
all_entities = get_all_entities_per_sentence(text)
|
| 270 |
+
else:
|
| 271 |
+
text = st.session_state.summary_output
|
| 272 |
+
all_entities = get_all_entities_per_sentence(text)
|
| 273 |
+
doc = nlp(text)
|
| 274 |
+
tok_l = doc.to_json()['tokens']
|
| 275 |
+
test_list_dict_output = []
|
| 276 |
+
|
| 277 |
+
sentences = list(doc.sents)
|
| 278 |
+
for i, sentence in enumerate(sentences):
|
| 279 |
+
start_id = sentence.start
|
| 280 |
+
end_id = sentence.end
|
| 281 |
+
for t in tok_l:
|
| 282 |
+
if t["id"] < start_id or t["id"] > end_id:
|
| 283 |
+
continue
|
| 284 |
+
head = tok_l[t['head']]
|
| 285 |
+
if t['dep'] == 'amod' or t['dep'] == "pobj":
|
| 286 |
+
object_here = text[t['start']:t['end']]
|
| 287 |
+
object_target = text[head['start']:head['end']]
|
| 288 |
+
if t['dep'] == "pobj" and str.lower(object_target) != "in":
|
| 289 |
+
continue
|
| 290 |
+
# ONE NEEDS TO BE ENTITY
|
| 291 |
+
if object_here in all_entities[i]:
|
| 292 |
+
identifier = object_here + t['dep'] + object_target
|
| 293 |
+
test_list_dict_output.append({"dep": t['dep'], "cur_word_index": (t['id'] - sentence.start),
|
| 294 |
+
"target_word_index": (t['head'] - sentence.start),
|
| 295 |
+
"identifier": identifier, "sentence": str(sentence)})
|
| 296 |
+
elif object_target in all_entities[i]:
|
| 297 |
+
identifier = object_here + t['dep'] + object_target
|
| 298 |
+
test_list_dict_output.append({"dep": t['dep'], "cur_word_index": (t['id'] - sentence.start),
|
| 299 |
+
"target_word_index": (t['head'] - sentence.start),
|
| 300 |
+
"identifier": identifier, "sentence": str(sentence)})
|
| 301 |
+
else:
|
| 302 |
+
continue
|
| 303 |
+
return test_list_dict_output
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
def render_svg(svg_file):
|
| 307 |
+
with open(svg_file, "r") as f:
|
| 308 |
+
lines = f.readlines()
|
| 309 |
+
svg = "".join(lines)
|
| 310 |
+
|
| 311 |
+
# """Renders the given svg string."""
|
| 312 |
+
b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8")
|
| 313 |
+
html = r'<img src="data:image/svg+xml;base64,%s"/>' % b64
|
| 314 |
+
return html
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
def generate_abstractive_summary(text, type, min_len=120, max_len=512, **kwargs):
|
| 318 |
+
text = text.strip().replace("\n", " ")
|
| 319 |
+
if type == "top_p":
|
| 320 |
+
text = summarization_model(text, min_length=min_len,
|
| 321 |
+
max_length=max_len,
|
| 322 |
+
top_k=50, top_p=0.95, clean_up_tokenization_spaces=True, truncation=True, **kwargs)
|
| 323 |
+
elif type == "greedy":
|
| 324 |
+
text = summarization_model(text, min_length=min_len,
|
| 325 |
+
max_length=max_len, clean_up_tokenization_spaces=True, truncation=True, **kwargs)
|
| 326 |
+
elif type == "top_k":
|
| 327 |
+
text = summarization_model(text, min_length=min_len, max_length=max_len, top_k=50,
|
| 328 |
+
clean_up_tokenization_spaces=True, truncation=True, **kwargs)
|
| 329 |
+
elif type == "beam":
|
| 330 |
+
text = summarization_model(text, min_length=min_len,
|
| 331 |
+
max_length=max_len,
|
| 332 |
+
clean_up_tokenization_spaces=True, truncation=True, **kwargs)
|
| 333 |
+
summary = text[0]['summary_text'].replace("<n>", " ")
|
| 334 |
+
return summary
|
| 335 |
+
|
| 336 |
+
def clean_text(text,doc=False,plain_text=False,url=False):
|
| 337 |
+
"""Return clean text from the various input sources"""
|
| 338 |
+
|
| 339 |
+
if url:
|
| 340 |
+
is_url = validators.url(text)
|
| 341 |
+
|
| 342 |
+
if is_url:
|
| 343 |
+
# complete text, chunks to summarize (list of sentences for long docs)
|
| 344 |
+
article_title,chunks = article_text_extractor(url=url_text)
|
| 345 |
+
|
| 346 |
+
return article_title, chunks
|
| 347 |
+
|
| 348 |
+
elif doc:
|
| 349 |
+
|
| 350 |
+
clean_text = chunk_clean_text(preprocess_plain_text(extract_text_from_file(text)))
|
| 351 |
+
|
| 352 |
+
return None, clean_text
|
| 353 |
+
|
| 354 |
+
elif plain_text:
|
| 355 |
+
|
| 356 |
+
clean_text = chunk_clean_text(preprocess_plain_text(text))
|
| 357 |
+
|
| 358 |
+
return None, clean_text
|
| 359 |
+
|
| 360 |
+
# Load all different models (cached) at start time of the hugginface space
|
| 361 |
+
sentence_embedding_model = get_sentence_embedding_model()
|
| 362 |
+
ner_model = get_transformer_pipeline()
|
| 363 |
+
nlp = get_spacy()
|
| 364 |
+
|
| 365 |
+
@st.experimental_singleton
|
| 366 |
+
def get_spacy():
|
| 367 |
+
nlp = en_core_web_lg.load()
|
| 368 |
+
return nlp
|
| 369 |
+
|
| 370 |
+
@st.experimental_singleton
|
| 371 |
def facebook_model():
|
| 372 |
|
| 373 |
summarizer = pipeline('summarization',model='facebook/bart-large-cnn')
|
| 374 |
return summarizer
|
| 375 |
|
| 376 |
+
@st.experimental_singleton
|
| 377 |
def schleifer_model():
|
| 378 |
|
| 379 |
summarizer = pipeline('summarization',model='sshleifer/distilbart-cnn-12-6')
|
| 380 |
return summarizer
|
| 381 |
|
| 382 |
+
@st.experimental_singleton
|
| 383 |
+
def get_sentence_embedding_model():
|
| 384 |
+
return SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 385 |
+
|
| 386 |
+
@st.experimental_singleton
|
| 387 |
+
def get_ner_pipeline():
|
| 388 |
+
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 389 |
+
model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 390 |
+
return pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
|
| 391 |
+
|
| 392 |
#Streamlit App
|
| 393 |
|
| 394 |
st.title("Article Text and Link Extractive Summarizer 📝")
|
|
|
|
| 429 |
|
| 430 |
url_text = st.text_input("Please Enter a url here")
|
| 431 |
|
| 432 |
+
if url_text:
|
| 433 |
+
article_title, clean_text = clean_text(url_text, url=True)
|
| 434 |
+
|
| 435 |
+
article_text = st.text_area(
|
| 436 |
+
label='Full Article Text',
|
| 437 |
+
value= clean_text,
|
| 438 |
+
height=250
|
| 439 |
+
)
|
| 440 |
|
| 441 |
st.markdown(
|
| 442 |
"<h3 style='text-align: center; color: red;'>OR</h3>",
|
|
|
|
| 454 |
"Upload a .txt, .pdf, .docx file for summarization"
|
| 455 |
)
|
| 456 |
|
| 457 |
+
if plain_text:
|
| 458 |
+
None, clean_text = clean_text(plain_text,plain_text=True)
|
|
|
|
|
|
|
|
|
|
| 459 |
|
| 460 |
elif upload_doc:
|
| 461 |
+
None, clean_text = clean_text(plain_text,doc=True)
|
| 462 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 463 |
summarize = st.button("Summarize")
|
| 464 |
|
| 465 |
# called on toggle button [summarize]
|
| 466 |
if summarize:
|
| 467 |
if model_type == "Facebook-Bart":
|
| 468 |
+
if url_text:
|
| 469 |
+
text_to_summarize = url_clean_text
|
| 470 |
else:
|
| 471 |
text_to_summarize = clean_text
|
| 472 |
|
|
|
|
| 478 |
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
|
| 479 |
|
| 480 |
elif model_type == "Sshleifer-DistilBart":
|
| 481 |
+
if url_text:
|
| 482 |
+
text_to_summarize = url_clean_text
|
| 483 |
else:
|
| 484 |
text_to_summarize = clean_text
|
| 485 |
|
|
|
|
| 488 |
):
|
| 489 |
summarizer_model = schleifer_model()
|
| 490 |
summarized_text = summarizer_model(text_to_summarize, max_length=max_len, min_length=min_len)
|
| 491 |
+
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
|
|
|
|
|
|
|
|
|
|
| 492 |
|
| 493 |
+
with st.spinner("Calculating and matching entities, this takes a few seconds..."):
|
| 494 |
|
| 495 |
+
entity_match_html = highlight_entities(clean_text,summarized_text)
|
| 496 |
+
st.subheader("Summarized text with matched entities in Green and mismatched entities in Red relative to the original text")
|
| 497 |
+
st.markdown("####")
|
| 498 |
+
|
| 499 |
+
if article_title:
|
| 500 |
+
|
| 501 |
+
# view summarized text (expander)
|
| 502 |
+
st.markdown(f"Article title: {article_title}")
|
| 503 |
+
|
| 504 |
+
st.markdown("####")
|
| 505 |
+
st.write(entity_match_html, unsafe_allow_html=True)
|
| 506 |
|
| 507 |
+
st.markdown("####")
|
| 508 |
|
| 509 |
+
summary_downloader(summarized_text)
|
| 510 |
|
| 511 |
|
| 512 |
st.markdown("""
|