Spaces:
Runtime error
Runtime error
initial commit
Browse files
README.md
CHANGED
|
@@ -9,4 +9,7 @@ app_file: app.py
|
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
+
|
| 13 |
+
Convert a spritesheet (that is slightly misaligned) to a gif automagically
|
| 14 |
+
|
| 15 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from io import BytesIO
|
| 4 |
+
import base64
|
| 5 |
+
import requests
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
from collections import Counter
|
| 10 |
+
|
| 11 |
+
from PIL import Image
|
| 12 |
+
|
| 13 |
+
import numpy as np
|
| 14 |
+
|
| 15 |
+
import matplotlib.pyplot as plt
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def compute_fft_cross_correlation(img1, img2):
|
| 19 |
+
|
| 20 |
+
fft1 = np.fft.fft2(img1)
|
| 21 |
+
|
| 22 |
+
fft2 = np.fft.fft2(np.rot90(img2, 2), s=img1.shape)
|
| 23 |
+
|
| 24 |
+
result = np.fft.ifft2(fft1 * fft2).real
|
| 25 |
+
|
| 26 |
+
return result
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def compute_offsets(reference, images, window_size):
|
| 31 |
+
|
| 32 |
+
reference_gray = np.array(reference.convert('L'))
|
| 33 |
+
|
| 34 |
+
offsets = []
|
| 35 |
+
|
| 36 |
+
for img in images:
|
| 37 |
+
|
| 38 |
+
img_gray = np.array(img.convert('L'))
|
| 39 |
+
|
| 40 |
+
correlation = compute_fft_cross_correlation(reference_gray, img_gray)
|
| 41 |
+
|
| 42 |
+
# Roll the correlation by half the width and height
|
| 43 |
+
height, width = correlation.shape
|
| 44 |
+
correlation = np.roll(correlation, height // 2, axis=0)
|
| 45 |
+
correlation = np.roll(correlation, width // 2, axis=1)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# Find the peak in the central region of the correlation
|
| 49 |
+
center_x, center_y = height // 2, width // 2
|
| 50 |
+
start_x, start_y = center_x - window_size // 2, center_y - window_size // 2
|
| 51 |
+
end_x, end_y = start_x + window_size, start_y + window_size
|
| 52 |
+
|
| 53 |
+
#make sure starts and ends are in the range(0,height) and (0,width)
|
| 54 |
+
start_x = max(start_x,0)
|
| 55 |
+
start_y = max(start_y,0)
|
| 56 |
+
end_x = min(end_x,height-1)
|
| 57 |
+
end_y = min(end_y,width-1)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
window_size_x = end_x - start_x
|
| 61 |
+
window_size_y = end_y - start_y
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
peak_x, peak_y = np.unravel_index(np.argmax(correlation[start_x:end_x, start_y:end_y]), (window_size_x, window_size_y))
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
'''
|
| 70 |
+
#plot the correlation
|
| 71 |
+
fig, axs = plt.subplots(1, 5, figsize=(10, 5))
|
| 72 |
+
axs[0].imshow(reference_gray, cmap='gray')
|
| 73 |
+
axs[0].set_title('Reference')
|
| 74 |
+
axs[1].imshow(img_gray, cmap='gray')
|
| 75 |
+
axs[1].set_title('Image')
|
| 76 |
+
axs[2].imshow(correlation, cmap='hot', interpolation='nearest', extent=[-window_size, window_size, -window_size, window_size])
|
| 77 |
+
axs[2].set_title('Correlation')
|
| 78 |
+
axs[3].imshow(correlation, cmap='hot', interpolation='nearest')
|
| 79 |
+
axs[3].set_title('Correlation full')
|
| 80 |
+
axs[4].imshow(correlation[start_x:end_x, start_y:end_y], cmap='hot', interpolation='nearest')
|
| 81 |
+
axs[4].set_title('Correlation cropped')
|
| 82 |
+
plt.show()
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
print("what?",np.argmax(correlation[start_x:end_x, start_y:end_y]))
|
| 86 |
+
|
| 87 |
+
print(peak_x, peak_y,start_x,end_x,start_y,end_y,center_x,center_y)
|
| 88 |
+
'''
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
# Compute the offset in the range [-window_size, window_size]
|
| 92 |
+
peak_x += start_x - center_x + 1
|
| 93 |
+
peak_y += start_y - center_y + 1
|
| 94 |
+
|
| 95 |
+
#signs are wrong
|
| 96 |
+
#peak_x = -peak_x
|
| 97 |
+
#peak_y = -peak_y
|
| 98 |
+
|
| 99 |
+
print(peak_x, peak_y)
|
| 100 |
+
|
| 101 |
+
# Compute the offset in the range [-window_size, window_size]
|
| 102 |
+
if peak_x > correlation.shape[0] // 2:
|
| 103 |
+
peak_x -= correlation.shape[0]
|
| 104 |
+
if peak_y > correlation.shape[1] // 2:
|
| 105 |
+
peak_y -= correlation.shape[1]
|
| 106 |
+
|
| 107 |
+
if peak_x >= 0:
|
| 108 |
+
peak_x = min(peak_x, window_size)
|
| 109 |
+
else:
|
| 110 |
+
peak_x = max(peak_x, -window_size)
|
| 111 |
+
|
| 112 |
+
if peak_y >= 0:
|
| 113 |
+
peak_y = min(peak_y, window_size)
|
| 114 |
+
else:
|
| 115 |
+
peak_y = max(peak_y, -window_size)
|
| 116 |
+
|
| 117 |
+
offsets.append((peak_x, peak_y))
|
| 118 |
+
|
| 119 |
+
return offsets
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def find_most_common_color(image):
|
| 123 |
+
|
| 124 |
+
pixels = list(image.getdata())
|
| 125 |
+
|
| 126 |
+
color_counter = Counter(pixels)
|
| 127 |
+
|
| 128 |
+
return color_counter.most_common(1)[0][0]
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def slice_frames_final(original, centers, frame_width, frame_height, background_color=(255, 255, 0, 255)):
|
| 133 |
+
|
| 134 |
+
sliced_frames = []
|
| 135 |
+
|
| 136 |
+
original_width, original_height = original.size
|
| 137 |
+
|
| 138 |
+
for center_x, center_y in centers:
|
| 139 |
+
|
| 140 |
+
left = center_x - frame_width // 2
|
| 141 |
+
|
| 142 |
+
upper = center_y - frame_height // 2
|
| 143 |
+
|
| 144 |
+
right = left + frame_width
|
| 145 |
+
|
| 146 |
+
lower = upper + frame_height
|
| 147 |
+
|
| 148 |
+
new_frame = Image.new("RGBA", (frame_width, frame_height), background_color)
|
| 149 |
+
|
| 150 |
+
paste_x = max(0, -left)
|
| 151 |
+
|
| 152 |
+
paste_y = max(0, -upper)
|
| 153 |
+
|
| 154 |
+
cropped_frame = original.crop((max(0, left), max(0, upper), min(original_width, right), min(original_height, lower)))
|
| 155 |
+
|
| 156 |
+
new_frame.paste(cropped_frame, (paste_x, paste_y))
|
| 157 |
+
|
| 158 |
+
sliced_frames.append(new_frame)
|
| 159 |
+
|
| 160 |
+
return sliced_frames
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def create_aligned_gif(original_image, columns_per_row, window_size=200, duration=100,output_gif_path = 'output.gif'):
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
original_width, original_height = original_image.size
|
| 168 |
+
|
| 169 |
+
rows = len(columns_per_row)
|
| 170 |
+
|
| 171 |
+
total_frames = sum(columns_per_row)
|
| 172 |
+
|
| 173 |
+
background_color = find_most_common_color(original_image)
|
| 174 |
+
|
| 175 |
+
frame_height = original_height // rows
|
| 176 |
+
|
| 177 |
+
min_frame_width = min([original_width // cols for cols in columns_per_row])
|
| 178 |
+
|
| 179 |
+
frames = []
|
| 180 |
+
|
| 181 |
+
for i in range(rows):
|
| 182 |
+
|
| 183 |
+
frame_width = original_width // columns_per_row[i]
|
| 184 |
+
|
| 185 |
+
for j in range(columns_per_row[i]):
|
| 186 |
+
|
| 187 |
+
left = j * frame_width + (frame_width - min_frame_width) // 2
|
| 188 |
+
|
| 189 |
+
upper = i * frame_height
|
| 190 |
+
|
| 191 |
+
right = left + min_frame_width
|
| 192 |
+
|
| 193 |
+
lower = upper + frame_height
|
| 194 |
+
|
| 195 |
+
frame = original_image.crop((left, upper, right, lower))
|
| 196 |
+
|
| 197 |
+
frames.append(frame)
|
| 198 |
+
|
| 199 |
+
fft_offsets = compute_offsets(frames[0], frames, window_size=window_size)
|
| 200 |
+
|
| 201 |
+
center_coordinates = []
|
| 202 |
+
|
| 203 |
+
frame_idx = 0
|
| 204 |
+
|
| 205 |
+
for i in range(rows):
|
| 206 |
+
|
| 207 |
+
frame_width = original_width // columns_per_row[i]
|
| 208 |
+
|
| 209 |
+
for j in range(columns_per_row[i]):
|
| 210 |
+
|
| 211 |
+
offset_y,offset_x = fft_offsets[frame_idx]
|
| 212 |
+
|
| 213 |
+
center_x = j * frame_width + (frame_width) // 2 - offset_x
|
| 214 |
+
|
| 215 |
+
center_y = frame_height * i + frame_height//2 - offset_y
|
| 216 |
+
|
| 217 |
+
center_coordinates.append((center_x, center_y))
|
| 218 |
+
|
| 219 |
+
frame_idx += 1
|
| 220 |
+
|
| 221 |
+
sliced_frames = slice_frames_final(original_image, center_coordinates, min_frame_width, frame_height, background_color=background_color)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
sliced_frames[0].save(output_gif_path, save_all=True, append_images=sliced_frames[1:], loop=0, duration=duration)
|
| 226 |
+
|
| 227 |
+
'''
|
| 228 |
+
#display frames
|
| 229 |
+
for frame in sliced_frames:
|
| 230 |
+
plt.figure()
|
| 231 |
+
plt.imshow(frame)
|
| 232 |
+
'''
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
return output_gif_path
|
| 236 |
+
|
| 237 |
+
def wrapper_func(img, columns_per_row_str):
|
| 238 |
+
#img = Image.open(BytesIO(file))
|
| 239 |
+
|
| 240 |
+
#img = Image.fromarray(img_arr)
|
| 241 |
+
|
| 242 |
+
columns_per_row = [int(x.strip()) for x in columns_per_row_str.split(',')]
|
| 243 |
+
output_gif_path = 'output.gif'
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
print("about to die",img,columns_per_row)
|
| 247 |
+
|
| 248 |
+
create_aligned_gif(img, columns_per_row)
|
| 249 |
+
#with open(output_gif_path, "rb") as f:
|
| 250 |
+
#return base64.b64encode(f.read()).decode()
|
| 251 |
+
# Image.open(output_gif_path)
|
| 252 |
+
|
| 253 |
+
return output_gif_path
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
# Example image in the form of a NumPy array
|
| 257 |
+
#example_image = Image.open("https://raw.githubusercontent.com/nagolinc/notebooks/main/ss5.png")
|
| 258 |
+
|
| 259 |
+
url = "https://raw.githubusercontent.com/nagolinc/notebooks/main/ss5.png"
|
| 260 |
+
response = requests.get(url)
|
| 261 |
+
example_image = Image.open(BytesIO(response.content))
|
| 262 |
+
|
| 263 |
+
# Example for "Columns per Row" as a string
|
| 264 |
+
example_columns_per_row = "5,5,5"
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
iface = gr.Interface(
|
| 269 |
+
fn=wrapper_func,
|
| 270 |
+
inputs=[
|
| 271 |
+
gr.components.Image(label="Upload Spritesheet",type='pil'),
|
| 272 |
+
gr.components.Textbox(label="Columns per Row", default="3,4,3")
|
| 273 |
+
],
|
| 274 |
+
outputs=gr.components.Image(type="filepath", label="Generated GIF"),
|
| 275 |
+
examples=[[example_image, example_columns_per_row]], # Adding examples here
|
| 276 |
+
live=False,
|
| 277 |
+
server_name="Hugging Face Spaces",
|
| 278 |
+
server_port=80,
|
| 279 |
+
analytics_enabled=False
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
iface.launch()
|